Skip Nav Destination
Close Modal
Search Results for
abrasion-resistant cast iron
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 731 Search Results for
abrasion-resistant cast iron
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 31 August 2017
Fig. 21 Microstructure of ASTM A532 class II, type A abrasion-resistant cast iron in the heat treated condition. (a) Etched with Beraha’s sulfamic reagent No. 4. Original magnification: 100×. (b) Etched with Beraha’s sulfamic reagent No. 4. Original magnification: 500×. (c) Etched
More
Image
Published: 31 August 2017
Fig. 23 Microstructure of ASTM A532 class II, grade D abrasion-resistant cast iron in the heat treated condition. The matrix is martensite in (a to c). The carbides have been colored in (d). (a) Beraha’s sulfamic reagent No. 4. Original magnification: 100×. (b) Vilella’s reagent. Original
More
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006351
EISBN: 978-1-62708-179-5
... discusses the use of black and white etchants and lists the compositions of abrasion-resistant cast irons according to ASTM A532/A532M in a table. abrasion-resistant cast iron black etchants cast iron graphite morphology high-alloy cast iron microstructure white etchants LIKE OTHER CAST...
Abstract
This article describes two contemporary approaches for preparing cast iron specimens with a wide range of phases and constituents as well as different graphite morphologies. It introduces concepts and preparation materials that enable metallographers to shorten the process while producing better, more consistent results. Recommended procedures to prepare cast irons and examples of high-alloy cast iron microstructures revealed using a variety of etchants are presented. Several etchants are used to reveal the matrix microstructure, depending on the alloy content. The article discusses the use of black and white etchants and lists the compositions of abrasion-resistant cast irons according to ASTM A532/A532M in a table.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003111
EISBN: 978-1-62708-199-3
... irons, heat-resistant cast irons, and abrasion-resistant cast irons. It provides information on the effect of the alloying element on their high-temperature properties. The article also discusses the microstructure and mechanical properties of alloy cast irons. abrasion-resistant cast irons alloy...
Abstract
Alloy cast irons are casting alloys based on the Fe-C-Si system that contain one or more alloying elements added to enhance one or more useful properties. This article discusses the composition of different types of alloy cast iron, including white cast irons, corrosion-resistant cast irons, heat-resistant cast irons, and abrasion-resistant cast irons. It provides information on the effect of the alloying element on their high-temperature properties. The article also discusses the microstructure and mechanical properties of alloy cast irons.
Image
Published: 31 August 2017
Fig. 25 Microstructure of another specimen of ASTM A532 class III, type A abrasion-resistant cast iron etched with Vilella’s reagent, revealing a pronounced dendritic structure with massive Cr 7 C 3 carbides and a martensitic matrix. Original magnification: (a) 50×, (b) 100×, (c) 200×, and (d
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005327
EISBN: 978-1-62708-187-0
... processing unique to the production of these alloys. The high-alloyed white irons are primarily used for abrasion-resistant applications and are readily cast into the parts needed in machinery for crushing, grinding, and handling of abrasive materials. The chromium content of high-alloyed white irons...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006305
EISBN: 978-1-62708-179-5
... Abstract The high-alloyed white irons are primarily used for abrasion-resistant applications and are readily cast into the parts needed in machinery for crushing, grinding, and handling of abrasive materials. This article discusses three major groups of the high-alloy white cast irons: nickel...
Abstract
The high-alloyed white irons are primarily used for abrasion-resistant applications and are readily cast into the parts needed in machinery for crushing, grinding, and handling of abrasive materials. This article discusses three major groups of the high-alloy white cast irons: nickel-chromium white irons, chromium-molybdenum irons, and high-chromium white irons. Mechanical properties for three white irons representing each of these three general groups are presented as bar graphs. The article also describes the various heat treatments of a martensitic microstructure, including austenitization, quenching, tempering, annealing, and stress relieving.
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005988
EISBN: 978-1-62708-168-9
... treatment to develop proper balance between resistance to abrasion and toughness needed to withstand repeated impact. This article provides a brief discussion on the heat treatment, mechanical properties, and chemical compositions of high-alloy white cast irons such as nickel-chromium white irons and high...
Abstract
High-alloyed white cast irons are an important group of materials whose production must be considered separately from that of ordinary types of cast irons. The metallic matrix supporting the carbide phase in the high-alloy white cast irons can be adjusted by alloy content and heat treatment to develop proper balance between resistance to abrasion and toughness needed to withstand repeated impact. This article provides a brief discussion on the heat treatment, mechanical properties, and chemical compositions of high-alloy white cast irons such as nickel-chromium white irons and high-chromium white irons.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001006
EISBN: 978-1-62708-161-0
... irons, and heat-resistant cast irons. This article discusses abrasion-resistant chilled and white irons, high-alloy corrosion-resistant irons, and medium-alloy and high-alloy heat-resistant gray and ductile irons. The article outlines in a list the approximate ranges of alloy content for various types...
Abstract
Alloy cast irons are considered to be those casting alloys based on the iron-carbon-silicon system that contain one or more alloying elements intentionally added to enhance one or more useful properties. Alloy cast irons can be classified as white cast irons, corrosion-resistant cast irons, and heat-resistant cast irons. This article discusses abrasion-resistant chilled and white irons, high-alloy corrosion-resistant irons, and medium-alloy and high-alloy heat-resistant gray and ductile irons. The article outlines in a list the approximate ranges of alloy content for various types of alloy cast irons. The article explains the effects of alloying elements and the effects of inoculants. In most cast irons, it is the interaction among alloying elements that has the greatest effect on properties. Inoculants other than appropriate graphitizing or nodularizing agents are used rarely, if ever, in high-alloy corrosion-resistant or heat-resistant irons.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006341
EISBN: 978-1-62708-179-5
.... Due to their carbidic microstructure and high hardness, high-alloy white irons typically have excellent wear resistance and a certain level of combined corrosion-wear resistance for a broad variety of abrasion-resistant applications and are readily cast into the parts needed in machinery for crushing...
Abstract
The high-alloy irons can be categorized into two main groups: the high-alloy graphitic irons (covering both gray and ductile grades) and the high-alloy white irons. High-alloy irons are used in applications with demanding requirements, such as high resistance to wear, heat, and corrosion, or for combined properties. This article discusses the specification and selection of high-alloy irons. The common alloying elements and their effect on the stable and metastable eutectic temperatures are listed in a table. The article provides information on the compositions, properties and applications of high-alloy graphitic irons and high-alloy white irons.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006348
EISBN: 978-1-62708-179-5
... rotor ductile iron erosive wear gray cast iron gray iron grinding balls nonmetallic abrasive materials wear CAST IRONS have been widely used by engineers in applications that require low cost, excellent castability, good damping capacity, ease of machining, and wear resistance. They are used...
Abstract
This article presents typical wear applications for a variety of cast iron grades in a table. In general, wear is classified according to three major types: adhesive (frictional) wear (sliding and rolling) caused by contact of one metallic surface with another; abrasive wear caused by contact with metallic (shots, swarf) or nonmetallic abrasive materials; and erosive wear. The article discusses general wear characteristics of gray iron, compacted gray iron, and ductile iron. It provides information on the brake lining chemistry effects, graphite morphology effects, normal cast iron wear, local cast iron wear, and external abrasive effects on brake drums and disk brake rotors made of gray cast iron. The article concludes with a discussion on the application of cast iron for grinding balls.
Book Chapter
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006416
EISBN: 978-1-62708-192-4
... Abstract Cast irons have been widely used by engineers in applications that require low cost, excellent castability, good damping capacity, ease of machining, and wear resistance. This article discusses the classification of wear for cast irons: adhesive wear, abrasive wear, and erosive wear...
Abstract
Cast irons have been widely used by engineers in applications that require low cost, excellent castability, good damping capacity, ease of machining, and wear resistance. This article discusses the classification of wear for cast irons: adhesive wear, abrasive wear, and erosive wear. Typical wear applications for a variety of cast iron grades are listed in a table. The article reviews the general wear characteristics of gray irons, compacted graphite (CG) irons, and ductile irons. It discusses the typical compositions and properties of white and chilled iron castings. Gray cast iron is the dominant material for both brake drums and disk brake rotors. The article reviews brake lining chemistry effects, graphite morphology effects, and external abrasive effects on brake drums. It concludes with information on cast iron grinding balls.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006332
EISBN: 978-1-62708-179-5
... these concerns, the concept of maximum fluidity length ( Ref 6 ) was developed to quantitatively indicate the maximum distance the metal can flow within a channel. This length can then be reported as the fluidity of a specific abrasion-resistant cast iron. In the aforementioned study ( Ref 5 ), fluidity...
Abstract
Castability of alloys is a measure of their ability to be cast to a given shape with a given process without the formation of cracks/tears, pores/shrinkage, and/or other significant casting defects. This article discusses the factors which affect the fluidity of an iron melt: alloy composition and initial melt condition. Besides the basic alloy properties, the effective castability of high-alloy irons can be significantly improved through casting and casting system design. The article describes the product design and processing factors of high-alloy graphitic irons and high-alloy white irons. It explains the heat treatment of high-silicon irons for high-temperature service and concludes with a discussion on machining and finishing of high-alloy iron castings.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006339
EISBN: 978-1-62708-179-5
..., and abrasion resistance of the austempered ductile iron are discussed. The article concludes with information on the applications for austempered ductile iron. abrasion resistance austempered ductile iron castings fatigue fracture toughness hardenability heat treatment mechanical properties...
Abstract
Austempered ductile iron (ADI) results from a specialty heat treatment of ductile cast iron. This article discusses the production of austempered ductile iron by heat treatment. The austempered ductile iron grades, according to ISO 17804 and EN 1564, are presented in a table. For economic reasons, or to avoid metallurgical problems, combinations of alloys are often used to achieve the desired hardenability in austempered ductile iron. The article provides information on the alloy combinations for austempered ductile iron. The mechanical properties, fracture toughness, fatigue, and abrasion resistance of the austempered ductile iron are discussed. The article concludes with information on the applications for austempered ductile iron.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006335
EISBN: 978-1-62708-179-5
... cleaning abrasive waterjet cleaning barrel finishing cast iron cladding coating conversion coating corrosion resistance diffusion coating finishing hot dip coating inorganic coatings iron castings organic coatings plating porcelain enameling shot peening thermal spray vibratory finishing...
Abstract
Coating of cast irons is done to improve appearance and resistance to degradation due to corrosion, erosion, and wear. This article describes inorganic coating methods commonly applied to cast irons. The coating methods include plating, hot dip coating, conversion coating, diffusion coating, cladding, porcelain enameling, and thermal spray. Organic coatings have a wide variety of properties, but their primary use is for corrosion resistance combined with a pleasing colored appearance. The article discusses the various types of organic coatings applied to cast irons. Practically any degree of smoothness or roughness and requirement for color and gloss can be filled by organic coatings. The article describes abrasive blast cleaning, abrasive waterjet cleaning and finishing, vibratory finishing, barrel finishing, and shot peening for processing iron castings.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006349
EISBN: 978-1-62708-179-5
... materials Standard Materials/products covered A159 Automotive gray iron castings A319 Gray iron castings for elevated temperatures for nonpressure-containing parts A532 Abrasion-resistant cast irons A897 Austempered ductile iron castings Note: Because most cast iron standards...
Abstract
Cast irons provide excellent resistance to a wide range of corrosion environments when properly matched with that service environment. This article presents basic parameters to be considered before selecting cast irons for corrosion services. Alloying elements can play a dominant role in the susceptibility of cast irons to corrosion attack. The article discusses the various alloying elements, such as silicon, nickel, chromium, copper, and molybdenum, that enhance the corrosion resistance of cast irons. Cast irons exhibit the same general forms of corrosion as other metals and alloys. The article reviews the various forms of corrosions, such as graphitic corrosion, fretting corrosion, pitting and crevice corrosion, intergranular attack, erosion-corrosion, microbiologically induced corrosion, and stress-corrosion cracking. It discusses the four general categories of coatings used on cast irons to enhance corrosion resistance: metallic, organic, conversion, and enamel coatings.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006382
EISBN: 978-1-62708-192-4
... conductivity. Fig. 11 Microstructures of cast irons. (a) Gray iron with graphite flakes. (b) Nodular iron. Source: Ref 16 . (c) White iron In terms of abrasive wear resistance, white irons have the highest wear resistance, followed by nodular irons and then gray irons. Nonferrous Alloys...
Abstract
Abrasive wear is a surface-damage process with material loss caused by hard asperities or abrasive particles occurring when two surfaces are sliding against each other. There are two types of abrasive wear: two-body abrasion and three-body abrasion. This article discusses the abrasive wear mechanism in ductile materials and commonly used testers for evaluating the resistance of materials to abrasive wear. The testers include pin-on-disk, block-on-ring, block-on-drum, and dry sand/rubber wheel abrasion tester. The article reviews the abrasion resistance of metallic materials, ceramic materials, and polymeric materials. It discusses factors that influence abrasive wear, including the environment, hardness, toughness, microstructure, and lubrication.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003810
EISBN: 978-1-62708-183-2
.../products covered A 159 Automotive gray iron castings A 319 Gray iron castings for elevated temperatures for nonpressure-containing parts A 532 Abrasion-resistant cast irons A 897 Austempered ductile iron castings Note: Because most cast iron standards make chemical composition...
Abstract
This article discusses the five basic matrix structures in cast irons: ferrite, pearlite, bainite, martensite, and austenite. The alloying elements, used to enhance the corrosion resistance of cast irons, including silicon, nickel, chromium, copper, molybdenum, vanadium, and titanium, are reviewed. The article provides information on classes of the cast irons based on corrosion resistance. It describes the various forms of corrosion in cast irons, including graphitic corrosion, fretting corrosion, pitting and crevice corrosion, intergranular attack, erosion-corrosion, microbiologically induced corrosion, and stress-corrosion cracking. The cast irons suitable for the common corrosive environments are also discussed. The article reviews the coatings used on cast irons to enhance corrosion resistance, such as metallic, organic, conversion, and enamel coatings. It explains the basic parameters to be considered before selecting the cast irons for corrosion services.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003102
EISBN: 978-1-62708-199-3
... blows or high compressive and structural stresses, the very hard and abrasion-resistant martensitic cast irons may wear more slowly than manganese steel. However, these irons usually fail by early fracture with a considerable portion of the original cross section unworn, whereas manganese steel may...
Abstract
Hadfield's austenitic manganese steel exhibits high toughness and ductility with high work-hardening capacity and, usually, good wear resistance. Beginning with an overview of the as-cast properties and composition of these class of steels, this article discusses the heat treatment methods used to improve their wear resistance, and the changes in the mechanical properties after heat treatment. Manganese steels are unequaled in their ability to work harden, exceeding even the metastable austenitic stainless steels in this feature.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001303
EISBN: 978-1-62708-170-2
... alloying element dominates the composition. Table 2 lists approximate ranges of alloy content for various types of alloy cast irons used for abrasion-resistant, corrosion-resistant, and heat-resistant applications. Ranges of alloy content for various types of alloy cast irons Table 2 Ranges...
Abstract
This article provides a brief review of the classification and characteristics of cast irons. It describes the processes used to clean iron castings, including mechanical cleaning and finishing and nonmechanical cleaning. The article discusses surface treatments used to extend casting life when resistance to corrosion, wear, and erosion is required. The common methods include electroplating, electroless plating, hardfacing, weld cladding, surface hardening, porcelain enameling, and organic coatings.
1