Skip Nav Destination
Close Modal
Search Results for
X-ray topography
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 172 Search Results for
X-ray topography
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001760
EISBN: 978-1-62708-178-8
... Abstract X-ray topography is a technique that comprises topography and x-ray diffraction. This article provides a description of the kinematical theory and the dynamical theory of diffraction. It provides useful information on the configurations of reflection and transmission topography...
Abstract
X-ray topography is a technique that comprises topography and x-ray diffraction. This article provides a description of the kinematical theory and the dynamical theory of diffraction. It provides useful information on the configurations of reflection and transmission topography. The article explains various topographic methods, namely, divergent beam method, polycrystal rocking curve analysis, line broadening analysis, microbeam method, and polycrystal scattering topography, as well as their instrumentation. It also describes the applications of x-ray topography.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006644
EISBN: 978-1-62708-213-6
... Abstract X-ray topography is the general term for a family of x-ray diffraction imaging techniques capable of providing information on the nature and distribution of imperfections. This article provides a detailed account of x-ray topography techniques, providing information on the historical...
Abstract
X-ray topography is the general term for a family of x-ray diffraction imaging techniques capable of providing information on the nature and distribution of imperfections. This article provides a detailed account of x-ray topography techniques, providing information on the historical background and development trends in x-ray diffraction topography. The discussion covers the general principles, components of systems, and applications of x-ray topography techniques, namely conventional X-ray topographic techniques and synchrotron x-ray topographic techniques.
Image
Published: 15 December 2019
Fig. 1 (a) Schematic of x-ray topography technique. (b) Typical transmission x-ray topograph from a quartz wafer showing images of dislocations
More
Image
Published: 01 January 1986
Fig. 1 Arrangements for x-ray topography. (a) Reflection topography (the Bragg case). (b) Transmission topography (the Laue case.) P, primary beam; R, diffracted beam; n, normal to diffraction planes; θ B , Bragg angle
More
Image
Published: 01 January 1986
Image
Published: 15 December 2019
Fig. 6 Synchrotron white-beam x-ray topography transmission topograph ( g = 10 1 ¯ 0 , λ = 0.75 Å) recorded from an AlN single crystal under high-absorption conditions (μ t = 8) showing the direct (1), intermediary (3), and dynamical (2) images of a dislocation
More
Image
Published: 15 December 2019
Fig. 7 (a) Schematic of section x-ray topography. (b) Wavefields in Borrmann fan leading to formation of Pendellösung fringes. (c) Section x-ray topograph from a diamond crystal showing Pendellösung fringes that are distorted by dislocations
More
Image
Published: 15 December 2019
Fig. 27 (a)–(f) Simulated 11 2 ¯ 0 grazing incidence x-ray topography images of threading-edge dislocations (TEDs) with six different Burgers vectors. Top: The six types of TEDs are illustrated according to the position of the extra atomic half-planes associated with them.
More
Image
Published: 15 December 2019
Fig. 29 Synchrotron white-beam x-ray topography transmission images recorded from a region near the edge of a 76 mm (3.0 in.) wafer cut with 4° offcut toward [ 11 2 ¯ 0 ]. (a) 01 1 ¯ 0 reflection showing stacking-fault contrast from fault A only. (b) 0 1 ¯ 11
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005218
EISBN: 978-1-62708-187-0
... topography, two-dimensional X-ray radiography, and ultra-fast three-dimensional X-ray tomography. solidification microstructure solidification two-dimensional X-ray topography two-dimensional X-ray radiography in situ monitoring X-ray imaging synchrotron radiation ultra-fast three-dimensional X...
Abstract
Metal transparency and interaction with X-rays have been recognized as obvious candidate principles from which methods for in situ monitoring of solidification processes could be developed. This article describes the use of X-ray imaging-based techniques to investigate interface morphology evolution, solute transport, and various process phenomena at spatiotemporal resolutions. It discusses the three viable imaging techniques made available by synchrotron radiation for the real-time investigation of solidification microstructures in alloys. These include two-dimensional X-ray topography, two-dimensional X-ray radiography, and ultra-fast three-dimensional X-ray tomography.
Image
Published: 15 December 2019
spiral advanced in the opposite direction during physical vapor transport growth. (b)–(d) Glide of pinned BPD segment leading to activation of double-ended Frank-Read sources under elevated temperature after growth. (e)–(h) Series of recorded 11 2 ¯ 0 transmission x-ray topography images
More
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001756
EISBN: 978-1-62708-178-8
... for examining effects due to crystal defects or unusual aspects of a crystal structure. Single Crystal Topography X-ray topography is a unique application of single crystal analysis. It is essentially x-ray diffraction radiography in which a large area of a single crystal produces a single diffracted...
Abstract
X-ray diffraction techniques are useful for characterizing crystalline materials, such as metals, intermetallics, ceramics, minerals, polymers, plastics, and other inorganic or organic compounds. This article discusses the theory of x-rays and how they are generated and detected. It also describes the crystalline nature of certain materials and how the geometry of a unit cell, and hence crystal lattice, affects the direction and intensity of diffracted x-ray beams. The article concludes with several application examples involving measurements on single and polycrystalline materials.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006643
EISBN: 978-1-62708-213-6
... micrometers. Nowadays, these beamlines are abundant in all synchrotron radiation facilities around the world. Fig. 13 Single-crystal diffractometer. (a) Euler and (b) kappa geometries Single-Crystal Topography X-ray topography is a unique application of single-crystal analysis. It essentially...
Abstract
This article describes the methods of X-ray diffraction analysis, the types of information that can be obtained, and its interpretation. The discussion covers the basic theories of X-rays and various types of diffraction experiments, namely single-crystal methods for polychromatic and monochromatic beams, powder diffraction methods, and the Rietveld method.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006967
EISBN: 978-1-62708-439-0
... conditions Heat exchangers and lattice structures Surface topography characterization Extraction of surface topography for areal texture measurement Postfinishing assessment of surface roughness, including in internal channels Image-based modeling Conversion of x-ray computed tomography image...
Abstract
As additive manufacturing (AM) gains maturity as a manufacturing technique for production in many industrial sectors, inspection as a tool for quality control gains importance. This article is focused on the field of dimensional metrology, which is typically concerned with the verification of size, location, form, and surface topography of geometric features. This is split into two categories: geometric (size, location, form) and surface measurement (topography). The article also focuses on applicable inspection technologies, and it discusses the context within digital thread manufacturing. A case study on the Digital Inspection Requirements Enhancing Coverage and Traceability (DIRECT) is also presented.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005685
EISBN: 978-1-62708-198-6
.... These methods include light microscopy, scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. atomic force...
Abstract
This article focuses on the modes of operation, physical basis, sample requirements, properties characterized, advantages, and limitations of the characterization methods used to evaluate the physical morphology and chemical properties of component surfaces for medical devices. These methods include light microscopy, scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006402
EISBN: 978-1-62708-192-4
...-thickness changes, etc. EPMA Electron probe microanalysis Electron Characteristic x-ray Energy-dispersive x-ray, wavelength-dispersive x-ray quantitative analysis ≈0.5 µm; depth direction 0.3 to several micrometers Analysis of slip products ESR Electron spin resonance Magnetic field...
Abstract
The influence of friction and wear on the function and structure of tribological systems is determined by various types of tribological tests. This article introduces the general categories of tribological testing and describes the basic objectives of testing. It reviews the results of tribological tests, where the system-dependent characteristics of friction and wear data can be expressed in different forms, such as tribographs, transition diagrams, and tribomaps. A summary of various methods of surface analysis is presented in a table. The article discusses the relationship between wear and reliability in terms of exponential distribution, Weibull distribution, and gamma distribution. It concludes with information on the effects of interaction on failure probability.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003252
EISBN: 978-1-62708-199-3
... ball. For obvious reasons, these are termed backscattered electrons. Fig. 3 Interaction of the primary electron beam with atoms in the sample resulting in backscattered primary electrons, secondary electrons, and characteristic x-rays Secondary Electron Imaging of Surface Topography...
Abstract
Microstructural analysis is the combined characterization of the morphology, elemental composition, and crystallography of microstructural features through the use of a microscope. This article reviews three types of the most commonly used electron microscopies in metallurgical studies, namely scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy. It briefly describes the operating principles, instrumentation which includes energy dispersive X-ray detectors, spatial resolution, typical use of the techniques, elemental analysis detection threshold and precision, limitations, sample requirements, and the capabilities of related techniques.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003755
EISBN: 978-1-62708-177-1
..., surface topography, crystal orientation, magnetic domains 50–1000 nm 30–1000 nm Specimen current No external detector necessary Complementary contrast to backscattered plus secondary electron signal Same as backscattered electrons Same as backscattered electrons Characteristic x-rays (primary...
Abstract
This article outlines the beam/sample interactions and the basic instrumental design of a scanning electron microscopy (SEM), which include the electron gun, probeforming column (consisting of magnetic electron lenses, apertures, and scanning coils), electron detectors, and vacuum system. It discusses the contrasts mechanisms used for imaging and analyzing materials in the SEM. These include the topographic contrast, compositional contrast, and electron channeling pattern and orientation contrast. Special instrumentation and accessory equipment used at elevated pressures and during the X-ray microanalysis are reviewed. The article also provides information on the sample preparation procedure and the materials applications of the SEM.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001482
EISBN: 978-1-62708-173-3
... of the physics of the model, reflective topography accompanied with velocity measurement by x-ray radiography is more desirable. Velocity Measurement Heiple and Roper ( Ref 4 ) used a high-speed movie to track the flow of Al 2 O 3 particles on the weld pool surface to measure surface velocity...
Abstract
Fusion welding processes involve four phase changes, namely, solid-solid state, solid-liquid, liquid-vapor, and vapor-plasma. Each has its own thermal, momentum, and stress history. This article discusses some important techniques to validate temperature, momentum, stress, and residual strain history observed in the heat-affected zone of fusion welded materials.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005693
EISBN: 978-1-62708-178-8
... electron microscopy CBED convergent-beam electron diffraction DRS diffuse reflectance spectroscopy EDS energy-dispersive spectroscopy EELS electron energy loss spectroscopy ENAA epithermal neutron activation analysis EPMA electron probe x-ray microanalysis...
1