Skip Nav Destination
Close Modal
Search Results for
X-ray diffractometer
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 57
Search Results for X-ray diffractometer
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 1998
Fig. 8 Schematic of x-ray diffractometer. Typically, the x-ray tube remains stationary while the detector mechanically scans a range of θ angles. The sample also rotates with the detector such that diffraction is recorded from planes parallel to the sample surface.
More
Image
Published: 15 December 2019
Fig. 3 Schematic of x-ray diffractometer. Typically, the x-ray tube remains stationary while the detector mechanically scans a range of θ angles. The sample also rotates with the detector such that diffraction is recorded from planes parallel to the sample surface.
More
Image
Published: 01 January 2000
Fig. 14 Photograph of a miniature x-ray diffractometer for the one angle technique arrangement of XRD stress measurement. This device incorporates a Ruud-Barrett position sensitive scintillation detector and is capable of being inserted in a 101.60 mm (4 in.) inside diameter for measuring
More
Image
Published: 01 November 1995
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003251
EISBN: 978-1-62708-199-3
... the Debye-Scherrer camera and the X-ray diffractometer. The article also describes the uses of XRD analyses, such as the identification of phases or compounds in metals and ceramics; detection of order and disorder transformation; determination of lattice parameters and changes in lattice parameters due...
Abstract
X-ray diffraction (XRD) is the most extensively used method for identifying and characterizing various aspects of metals related to the arrangements and spacings of their atoms for bulk structural analysis. XRD techniques are also applicable to ceramics, geologic materials, and most inorganic chemical compounds. This article describes the operating principles and types of XRD analyses, along with information about the threshold sensitivity and precision, limitations, sample requirements, and capabilities of related techniques. The necessary instrumentation for XRD analyses include the Debye-Scherrer camera and the X-ray diffractometer. The article also describes the uses of XRD analyses, such as the identification of phases or compounds in metals and ceramics; detection of order and disorder transformation; determination of lattice parameters and changes in lattice parameters due to alloying and temperature effects; measurement of residual stresses; characterization of crystallite size and perfection; characterization of preferred orientations; and determination of single crystal orientations.
Image
Published: 01 January 1994
) Typical d versus sin 2 Ψ curve (where d is the interatomic distance, which varies according to stress level, and Ψ is the angle of the incoming x-ray beam relative to the surface) obtained from an x-ray diffractometer. Seven different Ψ orientations (from −45° to +45°) were used. The d -spacing can
More
Image
Published: 01 January 1986
Fig. 8 Geometry of the Bragg-Brentano diffractometer. F, line source of x-rays from the anode of the x-ray tube; P, soller slits (collimator); D, divergent slit; A, axis about which sample and detector rotate; S, sample; R, receiving slit; RP, receiving soller slits; SS, scatter slit
More
Image
Published: 01 January 1986
Fig. 9 Schematic of a thin film diffractometer. A, line source of x-rays; B, axial divergence of soller slit; C, glancing angle; D, sample; E, equatorial divergence soller slit; F, detector
More
Image
Published: 15 December 2019
Fig. 10 Geometry of the Bragg-Brentano diffractometer. F, line source of x-rays from the anode of the x-ray tube; P, Soller slits (collimator); D, divergent slit; A, axis about which sample and detector rotate; S, sample; R, receiving slit; RP, receiving Soller slits; SS, scatter slit
More
Image
Published: 15 December 2019
Fig. 11 Schematic of a thin-film diffractometer. A, line source of x-rays; B, axial divergence of Soller slit; C, glancing angle; D, sample; E, equatorial divergence Soller slit; F, detector
More
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001757
EISBN: 978-1-62708-178-8
.... Conventional Diffractometers Although film techniques have been in use since the inception of x-ray diffraction, the advent of powder diffractometers has been more recent. Powder diffractometers have been in use as a laboratory tool since the late 1950s and early 1960s. Automation of these devices began...
Abstract
X-ray powder diffraction (XRPD) techniques are used to characterize samples in the form of loose powders or aggregates of finely divided material that readily diffract x-rays in specified patterns. This article provides an introduction to XRPD, beginning with a review of sensing devices, including pinhole/Laue cameras, Debye-Scherrer/Gandolfi cameras, Guinier cameras, glancing angle cameras, conventional diffractometers, thin film diffractometers, Guinier diffractometers, and micro diffractometers. The article then describes several quantitative measurement methods, such as lattice parameter, absorption diffraction, spiking, and direct comparison, explaining where each may be used. It also identifies potential sources of error in XRPD measurements.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006680
EISBN: 978-1-62708-213-6
.... The article ends with a few application examples of XRPD. X-ray powder diffraction diffractometers Overview X-RAY POWDER DIFFRACTION (XRPD) techniques are used to characterize samples in the form of loose powders, aggregates of finely divided material or polycrystalline specimens ( Ref 1...
Abstract
X-ray powder diffraction (XRPD) techniques are used to characterize samples in the form of loose powders, aggregates of finely divided material or polycrystalline specimens. This article provides a detailed account of XRPD. It begins with a discussion on XRPD instrumentation and the techniques used to characterize samples. The article then describes the principles, advantages, and disadvantages of various types of powder diffractometers. A section on the Rietveld method of diffraction analysis is then presented. The article discusses various methods and procedures for qualifying and quantifying phase mixtures in powder samples. It provides information on typical sensitivity and experimental limits on precision of XRPD analysis and other systematic sources of errors that affect accuracy. Some of the factors pertinent to the estimation of crystallite size and defects are also presented. The article ends with a few application examples of XRPD.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006656
EISBN: 978-1-62708-213-6
... to be a continuous ring ( Fig. 9 ). Fig. 9 X-ray diffraction data collected for (a) coarse, (b) medium, and (c) fine particle specimens (Cu Kα radiation, reflection-mode geometry diffractometer, and pixel detector). Source: Ref 15 . For sheet samples such as polymer films or thin metal foils, samples...
Abstract
This article discusses various concepts of micro x-ray diffraction (XRD) used for the examination of materials in situ. The discussion covers the principles, equipment used, sample preparation procedure, considerations for calibrating a detector, steps for performing data analysis, and applications and interpretation of micro-XRD.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001765
EISBN: 978-1-62708-178-8
... in three days. The single-crystal diffractometer combines all the qualitative advantages of x-ray film techniques with the quantitative power of diffractometers. For example, a recent study of yttria-stabilized zirconia ( Ref 14 ) revealed the dc charge-induced mobility of oxygen atoms at 1040 K...
Abstract
Neutrons are a principal tool for the study of lattice vibrational spectra in materials. This article provides a detailed account of fission and spallation methods of neutron production that are capable of producing sufficient intensity to be useful in neutron scattering research. It describes the instrumentation required for, and advancements made in, neutron powder diffraction. The article further explains the texture and residual stress (macrostresses and microstresses) problems that are analyzed using the neutron powder diffraction method. It also outlines the single-crystal neutron diffraction technique, and provides examples of the applications of neutron diffraction.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006631
EISBN: 978-1-62708-213-6
... will be cooled, it is possible to use inert viscous liquids (e.g., motor or Vaseline oil), which will not crystallize at low temperatures. Then the crystalline sample should be placed for data collection into a single-crystal x-ray diffractometer. Today there are several world-leading manufacturers...
Abstract
This article provides a detailed account of the concepts of single-crystal x-ray diffraction (XRD). It begins with a historical review of XRD methods, followed by a description of the various factors involved in crystal symmetry. The article then focuses on the phase problem in x-ray structural analysis and validation of the structural model. Some of the factors to be considered for performing experimental procedure are provided. The article presents several examples of applications of single-crystal XRD. The following sections cover the crystallographic problem in terms of structural analysis, software programs for crystal structure solution and refinement, and visualization of crystal structures. The article ends with a discussion on various databases available for single-crystal XRD analysis.
Image
Published: 15 December 2019
Fig. 9 X-ray diffraction data collected for (a) coarse, (b) medium, and (c) fine particle specimens (Cu Kα radiation, reflection-mode geometry diffractometer, and pixel detector). Source: Ref 15 .
More
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001238
EISBN: 978-1-62708-170-2
... d versus sin 2 Ψ curve (where d is the interatomic distance, which varies according to stress level, and Ψ is the angle of the incoming x-ray beam relative to the surface) obtained from an x-ray diffractometer. Seven different Ψ orientations (from −45° to +45°) were used. The d -spacing can...
Abstract
The concept of surface integrity for grinding operations can be extended to encompass six different groups of key factors: visual, dimensional, residual stress, tribological, metallurgical, and others. This article discusses the importance of these factors in the performance and behavior of finishing methods in various manufactured parts. Special emphasis is given to residual stresses and their influence on the final mechanical properties of a manufactured part.
Image
Published: 15 December 2019
Fig. 14 Geometry of powder diffraction and several detection methods used in x-ray powder diffraction. (a) Cones of diffracted beams emanating from a powder sample. (b) Debye-Scherrer detection method. (c) Diffractometer method of detection. (d) Position-sensitive detection. (e) Guinier method
More
Image
Published: 15 December 2019
Fig. 20 Micro x-ray diffraction (μXRD) maps of kamacite and taenite showing the Widmanstätten pattern in a Toluca iron meteorite. (a) Toluca iron meteorite on the diffractometer. Etched portion of the cut surface shows the Widmanstätten pattern. (b) Two-dimensional (2-D) image collected
More
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001298
EISBN: 978-1-62708-170-2
... to the plane of the incident and detected x-ray beam, respectively. A Ψ-diffractometer gives symmetric irradiated areas in −ψ and +ψ tilted angles at a given ( hkl ) reflection line and a greater range of sin 2 ψ (from 0 to 0.95 for a Ψ-diffractometer and 0 to 0.5 for an Ω-diffractometer). Second...
Abstract
This article provides a useful guide for measuring residual macrostress on coatings. The most commonly used measurement methods are mechanical deflection, X-ray diffraction, and hole-drilling strain-gage. After a discussion on the origins of residual stress, the article describes the fundamental principles and presents examples of practical measurements for each method.
1