Skip Nav Destination
Close Modal
By
Wenqian Xu, Saul H. Lapidus, Andrey Y. Yakovenko, Youngchang Kim, Olaf J. Borkiewicz ...
Search Results for
X-ray diffraction technique
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 377 Search Results for
X-ray diffraction technique
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1986
Fig. 4 Basic geometry of the single-angle technique for x-ray diffraction residual stress measurement. N p , normal to the lattice planes; N s , normal to the surface. See text for a discussion of other symbols. Source: Ref 2
More
Image
Published: 15 December 2019
Fig. 4 Basic geometry of the single-angle technique for x-ray diffraction residual-stress measurement. β, angle of inclination of the instrument; 0, point at which a cone of diffracted radiation originates; 1 and 2, points of the diffracting crystals; S 1 and S 2 , the arc lengths along
More
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006632
EISBN: 978-1-62708-213-6
... Abstract This article provides a detailed account of x-ray diffraction (XRD) residual-stress techniques. It begins by describing the principles of XRD stress measurement, followed by a discussion on the most common methods of XRD residual-stress measurement. Some of the procedures required...
Abstract
This article provides a detailed account of x-ray diffraction (XRD) residual-stress techniques. It begins by describing the principles of XRD stress measurement, followed by a discussion on the most common methods of XRD residual-stress measurement. Some of the procedures required for XRD residual-stress measurement are then presented. The article provides information on measurement of subsurface stress gradients and stress relaxation caused by layer removal. The article concludes with a section on examples of applications of XRD residual-stress measurement that are typical of industrial metallurgical, process development, and failure analysis investigations undertaken at Lambda Research.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001761
EISBN: 978-1-62708-178-8
... model, and describes the most common methods of x-ray diffraction residual stress measurement, namely, single-angle and two angle techniques. It elaborates the major steps involved in x-ray diffraction residual stress measurement, explaining the possible sources of error in stress measurement...
Abstract
In x-ray diffraction residual stress measurement, the strain in the crystal lattice is measured, and the residual stress producing the strain is calculated, assuming a linear elastic distortion of the crystal lattice. This article provides a detailed account of the plane stress elastic model, and describes the most common methods of x-ray diffraction residual stress measurement, namely, single-angle and two angle techniques. It elaborates the major steps involved in x-ray diffraction residual stress measurement, explaining the possible sources of error in stress measurement. The article also outlines the applications of x-ray diffraction residual stress measurement with examples.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006654
EISBN: 978-1-62708-213-6
... Abstract This article discusses the techniques and applications of synchrotron x-ray diffraction, providing information on x-ray generation, monochromation, and crystallography. X-ray diffraction techniques covered include single-crystal and powder diffraction. Some of the factors involved...
Abstract
This article discusses the techniques and applications of synchrotron x-ray diffraction, providing information on x-ray generation, monochromation, and crystallography. X-ray diffraction techniques covered include single-crystal and powder diffraction. Some of the factors involved in the construction and development of macromolecular x-ray crystallography are also described.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001756
EISBN: 978-1-62708-178-8
... Abstract X-ray diffraction techniques are useful for characterizing crystalline materials, such as metals, intermetallics, ceramics, minerals, polymers, plastics, and other inorganic or organic compounds. This article discusses the theory of x-rays and how they are generated and detected...
Abstract
X-ray diffraction techniques are useful for characterizing crystalline materials, such as metals, intermetallics, ceramics, minerals, polymers, plastics, and other inorganic or organic compounds. This article discusses the theory of x-rays and how they are generated and detected. It also describes the crystalline nature of certain materials and how the geometry of a unit cell, and hence crystal lattice, affects the direction and intensity of diffracted x-ray beams. The article concludes with several application examples involving measurements on single and polycrystalline materials.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003329
EISBN: 978-1-62708-176-4
... the semidestructive methods of residual stress measurement: blind hole drilling and ring coring, spot annealing, and X-ray diffraction techniques. Nondestructive methods such as neutron diffraction, ultrasonic velocity, and magnetic Barkhausen noise techniques, are also discussed. Barkhausen noise analysis...
Abstract
This article discusses the need of and the strain basis for residual stress measurements and describes the nature of residual stress fields. A generic destructive stress relief procedure is described along with the issues generally involved in each procedural step. The article presents the stress reconstruction equations to be used for computational reconstruction of the stress fields from the measured strains for the destructive methods. It provides information on the sectioning, material removal, strain measurement, and chemical methods of residual stress measurement. The article reviews the semidestructive methods of residual stress measurement: blind hole drilling and ring coring, spot annealing, and X-ray diffraction techniques. Nondestructive methods such as neutron diffraction, ultrasonic velocity, and magnetic Barkhausen noise techniques, are also discussed.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002363
EISBN: 978-1-62708-193-1
... force microscopy, and scanning acoustic microscopy. The article also reviews the X-ray diffraction technique used for determining the compositional changes, strain changes, and residual stress evaluation during the fatigue process. acoustic emission technique atomic force microscopy crack growth...
Abstract
This article describes the test techniques that are available for monitoring crack initiation and crack growth and for obtaining information on fatigue damage in test specimens. These techniques include optical methods, the compliance method, electric potential measurement, and gel electrode imaging methods. The article discusses the magnetic techniques that are primarily used as inspection techniques for detecting fatigue cracks in structural components. It details the principles and operation procedures of the liquid penetrant methods, positron annihilation techniques, acoustic emission techniques, ultrasonic methods, eddy current techniques, infrared techniques, exoelectron methods, and gamma radiography. The article explains the microscopy methods used to determine fatigue crack initiation and propagation. These include electron microscopy, scanning tunneling microscopy, atomic force microscopy, and scanning acoustic microscopy. The article also reviews the X-ray diffraction technique used for determining the compositional changes, strain changes, and residual stress evaluation during the fatigue process.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006768
EISBN: 978-1-62708-295-2
..., Society of Automotive Engineers , 2003 4. Prevey P.S. , X-Ray Diffraction Residual Stress Techniques , Materials Characterization , Vol 10 , ASM Handbook , American Society for Metals , 1986 , p 380 – 392 10.31399/asm.hb.v10.a0001761 5. Lu J. et al. , Handbook...
Abstract
X-ray diffraction (XRD) residual-stress analysis is an essential tool for failure analysis. This article focuses primarily on what the analyst should know about applying XRD residual-stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses in a component or assembly and to the subsequent evaluation of corrective actions that alter the residual-stress state of a component for the purposes of preventing, minimizing, or eradicating the contribution of residual stress to premature failures. The article presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection; measurement validation is outlined as well. A number of case studies and examples are cited. The article also briefly summarizes the theory of XRD analysis and describes advances in equipment capability.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003528
EISBN: 978-1-62708-180-1
... Abstract This article focuses primarily on what an analyst should know about applying X-ray diffraction (XRD) residual stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses...
Abstract
This article focuses primarily on what an analyst should know about applying X-ray diffraction (XRD) residual stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses in a component or assembly. The article describes the steps required to calibrate instrumentation and to validate stress measurement results. It presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection, as well as an outline on measurement validation. The article also provides information on stress-corrosion cracking and corrosion fatigue. The importance of residual stress in fatigue is described with examples. The article explains the effects of heat treatment and manufacturing processes on residual stress. It concludes with a section on the XRD stress measurements in multiphase materials and composites and in locations of stress concentration.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006678
EISBN: 978-1-62708-213-6
... emission spectroscopy, high-temperature combustion, and inert gas fusion. This is followed by a section on techniques for determining the atomic structure of crystals, namely X-ray diffraction, neutron diffraction, and electron diffraction. Types of electron microscopies most commonly used...
Abstract
This article briefly discusses popular techniques for metals characterization. It begins with a description of the most common techniques for determining chemical composition of metals, namely X-ray fluorescence, optical emission spectroscopy, inductively coupled plasma optical emission spectroscopy, high-temperature combustion, and inert gas fusion. This is followed by a section on techniques for determining the atomic structure of crystals, namely X-ray diffraction, neutron diffraction, and electron diffraction. Types of electron microscopies most commonly used for microstructural analysis of metals, such as scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy, are then reviewed. The article contains tables listing analytical methods used for characterization of metals and alloys and surface analysis techniques. It ends by discussing the objective of metallography.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006643
EISBN: 978-1-62708-213-6
... and monochromatic beams, powder diffraction methods, and the Rietveld method. X-ray diffraction powder diffraction methods single-crystal methods Rietveld refinement Introduction Diffraction techniques are some of the most useful in the characterization of crystalline materials, such as metals...
Abstract
This article describes the methods of X-ray diffraction analysis, the types of information that can be obtained, and its interpretation. The discussion covers the basic theories of X-rays and various types of diffraction experiments, namely single-crystal methods for polychromatic and monochromatic beams, powder diffraction methods, and the Rietveld method.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003228
EISBN: 978-1-62708-199-3
... ), ultrasonics ( Ref 10 ), and electromagnetics ( Ref 11 , 12 ). With the x-ray diffraction technique, the interatomic planar distance is measured, and the corresponding stress is calculated. The penetration depth of x-rays is of the order of only 10 μm (400 μin.) in metals. Therefore, the technique is limited...
Abstract
This article reviews nondestructive testing (NDT) and inspection techniques, namely liquid penetrant, magnetic particle, ultrasonics, X-ray, eddy current, visual and radiography that are commonly used to detect and evaluate flaws or leaks in an engineering system. This article compares the merits and limitations of these techniques and describes the various uses of NDT, including leak detection, metrology, structure or microstructure characterization, stress-strain response determination, and rapid identification of metals and alloys.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001760
EISBN: 978-1-62708-178-8
... Abstract X-ray topography is a technique that comprises topography and x-ray diffraction. This article provides a description of the kinematical theory and the dynamical theory of diffraction. It provides useful information on the configurations of reflection and transmission topography...
Abstract
X-ray topography is a technique that comprises topography and x-ray diffraction. This article provides a description of the kinematical theory and the dynamical theory of diffraction. It provides useful information on the configurations of reflection and transmission topography. The article explains various topographic methods, namely, divergent beam method, polycrystal rocking curve analysis, line broadening analysis, microbeam method, and polycrystal scattering topography, as well as their instrumentation. It also describes the applications of x-ray topography.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001475
EISBN: 978-1-62708-173-3
... and classifies them as follows: Stress-relaxation techniques X-ray diffraction techniques Techniques using stress-sensitive properties Cracking techniques Classification of techniques for measuring residual stress Table 1 Classification of techniques for measuring residual stress...
Abstract
This article describes the formation of residual stresses and distortion, providing information on the techniques for measuring residual stresses. It presents a detailed discussion on the magnitude and distribution analysis of the residual stresses and distortion in weldments. The article briefly explains the effects of residual stresses and distortion on the brittle fracture and fatigue fracture of welded structures. It also provides information on the thermal treatments of weldments.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006644
EISBN: 978-1-62708-213-6
... Abstract X-ray topography is the general term for a family of x-ray diffraction imaging techniques capable of providing information on the nature and distribution of imperfections. This article provides a detailed account of x-ray topography techniques, providing information on the historical...
Abstract
X-ray topography is the general term for a family of x-ray diffraction imaging techniques capable of providing information on the nature and distribution of imperfections. This article provides a detailed account of x-ray topography techniques, providing information on the historical background and development trends in x-ray diffraction topography. The discussion covers the general principles, components of systems, and applications of x-ray topography techniques, namely conventional X-ray topographic techniques and synchrotron x-ray topographic techniques.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001300
EISBN: 978-1-62708-170-2
.... The experimental techniques for microstructural characterization include metallographic technique, X-ray diffraction, electron, microscopies, and porosimetry. coating structure electrodeposition electron microscopy metallographic technique microstructural characterization plasma spraying porosimetry...
Abstract
This article describes the structure of coatings produced by plasma spraying, vapor deposition, and electrodeposition processes. The main techniques used for microstructure assessment are introduced. The relationship between the microstructure and property is also discussed. The experimental techniques for microstructural characterization include metallographic technique, X-ray diffraction, electron, microscopies, and porosimetry.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001757
EISBN: 978-1-62708-178-8
... Abstract X-ray powder diffraction (XRPD) techniques are used to characterize samples in the form of loose powders or aggregates of finely divided material that readily diffract x-rays in specified patterns. This article provides an introduction to XRPD, beginning with a review of sensing...
Abstract
X-ray powder diffraction (XRPD) techniques are used to characterize samples in the form of loose powders or aggregates of finely divided material that readily diffract x-rays in specified patterns. This article provides an introduction to XRPD, beginning with a review of sensing devices, including pinhole/Laue cameras, Debye-Scherrer/Gandolfi cameras, Guinier cameras, glancing angle cameras, conventional diffractometers, thin film diffractometers, Guinier diffractometers, and micro diffractometers. The article then describes several quantitative measurement methods, such as lattice parameter, absorption diffraction, spiking, and direct comparison, explaining where each may be used. It also identifies potential sources of error in XRPD measurements.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005617
EISBN: 978-1-62708-174-0
... available measurement techniques and classifies them as follows: Stress-relaxation techniques X-ray diffraction techniques Techniques using stress-sensitive properties Cracking techniques Classification of techniques for measuring residual stress Table 1 Classification of techniques...
Abstract
This article describes the formation of residual stresses and distortion and the techniques for measuring residual stresses. It provides a discussion on the magnitude and distribution analysis of residual stresses and distortion in weldments. The article considers the effects of residual stresses and distortion on the brittle fracture and fatigue fracture of welded structures. The thermal treatments of weldments are also discussed.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006680
EISBN: 978-1-62708-213-6
... Abstract X-ray powder diffraction (XRPD) techniques are used to characterize samples in the form of loose powders, aggregates of finely divided material or polycrystalline specimens. This article provides a detailed account of XRPD. It begins with a discussion on XRPD instrumentation...
Abstract
X-ray powder diffraction (XRPD) techniques are used to characterize samples in the form of loose powders, aggregates of finely divided material or polycrystalline specimens. This article provides a detailed account of XRPD. It begins with a discussion on XRPD instrumentation and the techniques used to characterize samples. The article then describes the principles, advantages, and disadvantages of various types of powder diffractometers. A section on the Rietveld method of diffraction analysis is then presented. The article discusses various methods and procedures for qualifying and quantifying phase mixtures in powder samples. It provides information on typical sensitivity and experimental limits on precision of XRPD analysis and other systematic sources of errors that affect accuracy. Some of the factors pertinent to the estimation of crystallite size and defects are also presented. The article ends with a few application examples of XRPD.
1