1-20 of 377 Search Results for

X-ray diffraction technique

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 1986
Fig. 4 Basic geometry of the single-angle technique for x-ray diffraction residual stress measurement. N p , normal to the lattice planes; N s , normal to the surface. See text for a discussion of other symbols. Source: Ref 2 More
Image
Published: 15 December 2019
Fig. 4 Basic geometry of the single-angle technique for x-ray diffraction residual-stress measurement. β, angle of inclination of the instrument; 0, point at which a cone of diffracted radiation originates; 1 and 2, points of the diffracting crystals; S 1 and S 2 , the arc lengths along More
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006632
EISBN: 978-1-62708-213-6
... Abstract This article provides a detailed account of x-ray diffraction (XRD) residual-stress techniques. It begins by describing the principles of XRD stress measurement, followed by a discussion on the most common methods of XRD residual-stress measurement. Some of the procedures required...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001761
EISBN: 978-1-62708-178-8
... model, and describes the most common methods of x-ray diffraction residual stress measurement, namely, single-angle and two angle techniques. It elaborates the major steps involved in x-ray diffraction residual stress measurement, explaining the possible sources of error in stress measurement...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006654
EISBN: 978-1-62708-213-6
... Abstract This article discusses the techniques and applications of synchrotron x-ray diffraction, providing information on x-ray generation, monochromation, and crystallography. X-ray diffraction techniques covered include single-crystal and powder diffraction. Some of the factors involved...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001756
EISBN: 978-1-62708-178-8
... Abstract X-ray diffraction techniques are useful for characterizing crystalline materials, such as metals, intermetallics, ceramics, minerals, polymers, plastics, and other inorganic or organic compounds. This article discusses the theory of x-rays and how they are generated and detected...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003329
EISBN: 978-1-62708-176-4
... the semidestructive methods of residual stress measurement: blind hole drilling and ring coring, spot annealing, and X-ray diffraction techniques. Nondestructive methods such as neutron diffraction, ultrasonic velocity, and magnetic Barkhausen noise techniques, are also discussed. Barkhausen noise analysis...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002363
EISBN: 978-1-62708-193-1
... force microscopy, and scanning acoustic microscopy. The article also reviews the X-ray diffraction technique used for determining the compositional changes, strain changes, and residual stress evaluation during the fatigue process. acoustic emission technique atomic force microscopy crack growth...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006768
EISBN: 978-1-62708-295-2
..., Society of Automotive Engineers , 2003 4. Prevey P.S. , X-Ray Diffraction Residual Stress Techniques , Materials Characterization , Vol 10 , ASM Handbook , American Society for Metals , 1986 , p 380 – 392 10.31399/asm.hb.v10.a0001761 5. Lu J. et al. , Handbook...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003528
EISBN: 978-1-62708-180-1
... Abstract This article focuses primarily on what an analyst should know about applying X-ray diffraction (XRD) residual stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006678
EISBN: 978-1-62708-213-6
... emission spectroscopy, high-temperature combustion, and inert gas fusion. This is followed by a section on techniques for determining the atomic structure of crystals, namely X-ray diffraction, neutron diffraction, and electron diffraction. Types of electron microscopies most commonly used...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006643
EISBN: 978-1-62708-213-6
... and monochromatic beams, powder diffraction methods, and the Rietveld method. X-ray diffraction powder diffraction methods single-crystal methods Rietveld refinement Introduction Diffraction techniques are some of the most useful in the characterization of crystalline materials, such as metals...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003228
EISBN: 978-1-62708-199-3
... ), ultrasonics ( Ref 10 ), and electromagnetics ( Ref 11 , 12 ). With the x-ray diffraction technique, the interatomic planar distance is measured, and the corresponding stress is calculated. The penetration depth of x-rays is of the order of only 10 μm (400 μin.) in metals. Therefore, the technique is limited...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001760
EISBN: 978-1-62708-178-8
... Abstract X-ray topography is a technique that comprises topography and x-ray diffraction. This article provides a description of the kinematical theory and the dynamical theory of diffraction. It provides useful information on the configurations of reflection and transmission topography...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001475
EISBN: 978-1-62708-173-3
... and classifies them as follows: Stress-relaxation techniques X-ray diffraction techniques Techniques using stress-sensitive properties Cracking techniques Classification of techniques for measuring residual stress Table 1 Classification of techniques for measuring residual stress...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006644
EISBN: 978-1-62708-213-6
... Abstract X-ray topography is the general term for a family of x-ray diffraction imaging techniques capable of providing information on the nature and distribution of imperfections. This article provides a detailed account of x-ray topography techniques, providing information on the historical...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001300
EISBN: 978-1-62708-170-2
.... The experimental techniques for microstructural characterization include metallographic technique, X-ray diffraction, electron, microscopies, and porosimetry. coating structure electrodeposition electron microscopy metallographic technique microstructural characterization plasma spraying porosimetry...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001757
EISBN: 978-1-62708-178-8
... Abstract X-ray powder diffraction (XRPD) techniques are used to characterize samples in the form of loose powders or aggregates of finely divided material that readily diffract x-rays in specified patterns. This article provides an introduction to XRPD, beginning with a review of sensing...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005617
EISBN: 978-1-62708-174-0
... available measurement techniques and classifies them as follows: Stress-relaxation techniques X-ray diffraction techniques Techniques using stress-sensitive properties Cracking techniques Classification of techniques for measuring residual stress Table 1 Classification of techniques...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006680
EISBN: 978-1-62708-213-6
... Abstract X-ray powder diffraction (XRPD) techniques are used to characterize samples in the form of loose powders, aggregates of finely divided material or polycrystalline specimens. This article provides a detailed account of XRPD. It begins with a discussion on XRPD instrumentation...