Skip Nav Destination
Close Modal
Search Results for
X-ray diffraction residual-stress techniques
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 275
Search Results for X-ray diffraction residual-stress techniques
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001761
EISBN: 978-1-62708-178-8
... model, and describes the most common methods of x-ray diffraction residual stress measurement, namely, single-angle and two angle techniques. It elaborates the major steps involved in x-ray diffraction residual stress measurement, explaining the possible sources of error in stress measurement...
Abstract
In x-ray diffraction residual stress measurement, the strain in the crystal lattice is measured, and the residual stress producing the strain is calculated, assuming a linear elastic distortion of the crystal lattice. This article provides a detailed account of the plane stress elastic model, and describes the most common methods of x-ray diffraction residual stress measurement, namely, single-angle and two angle techniques. It elaborates the major steps involved in x-ray diffraction residual stress measurement, explaining the possible sources of error in stress measurement. The article also outlines the applications of x-ray diffraction residual stress measurement with examples.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006632
EISBN: 978-1-62708-213-6
... Abstract This article provides a detailed account of x-ray diffraction (XRD) residual-stress techniques. It begins by describing the principles of XRD stress measurement, followed by a discussion on the most common methods of XRD residual-stress measurement. Some of the procedures required...
Abstract
This article provides a detailed account of x-ray diffraction (XRD) residual-stress techniques. It begins by describing the principles of XRD stress measurement, followed by a discussion on the most common methods of XRD residual-stress measurement. Some of the procedures required for XRD residual-stress measurement are then presented. The article provides information on measurement of subsurface stress gradients and stress relaxation caused by layer removal. The article concludes with a section on examples of applications of XRD residual-stress measurement that are typical of industrial metallurgical, process development, and failure analysis investigations undertaken at Lambda Research.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003528
EISBN: 978-1-62708-180-1
... Abstract This article focuses primarily on what an analyst should know about applying X-ray diffraction (XRD) residual stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses...
Abstract
This article focuses primarily on what an analyst should know about applying X-ray diffraction (XRD) residual stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses in a component or assembly. The article describes the steps required to calibrate instrumentation and to validate stress measurement results. It presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection, as well as an outline on measurement validation. The article also provides information on stress-corrosion cracking and corrosion fatigue. The importance of residual stress in fatigue is described with examples. The article explains the effects of heat treatment and manufacturing processes on residual stress. It concludes with a section on the XRD stress measurements in multiphase materials and composites and in locations of stress concentration.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003228
EISBN: 978-1-62708-199-3
... such as photoelastic coatings, brittle coatings, or strain gages ( Ref 8 ). If the stress-strain behavior of the material is known, these strain values can be converted into stress values. Residual stresses in materials can be nondestructively measured by a variety of methods, including x-ray diffraction ( Ref 9...
Abstract
This article reviews nondestructive testing (NDT) and inspection techniques, namely liquid penetrant, magnetic particle, ultrasonics, X-ray, eddy current, visual and radiography that are commonly used to detect and evaluate flaws or leaks in an engineering system. This article compares the merits and limitations of these techniques and describes the various uses of NDT, including leak detection, metrology, structure or microstructure characterization, stress-strain response determination, and rapid identification of metals and alloys.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006768
EISBN: 978-1-62708-295-2
... Abstract X-ray diffraction (XRD) residual-stress analysis is an essential tool for failure analysis. This article focuses primarily on what the analyst should know about applying XRD residual-stress measurement techniques to failure analysis. Discussions are extended to the description of ways...
Abstract
X-ray diffraction (XRD) residual-stress analysis is an essential tool for failure analysis. This article focuses primarily on what the analyst should know about applying XRD residual-stress measurement techniques to failure analysis. Discussions are extended to the description of ways in which XRD can be applied to the characterization of residual stresses in a component or assembly and to the subsequent evaluation of corrective actions that alter the residual-stress state of a component for the purposes of preventing, minimizing, or eradicating the contribution of residual stress to premature failures. The article presents a practical approach to sample selection and specimen preparation, measurement location selection, and measurement depth selection; measurement validation is outlined as well. A number of case studies and examples are cited. The article also briefly summarizes the theory of XRD analysis and describes advances in equipment capability.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003329
EISBN: 978-1-62708-176-4
... the semidestructive methods of residual stress measurement: blind hole drilling and ring coring, spot annealing, and X-ray diffraction techniques. Nondestructive methods such as neutron diffraction, ultrasonic velocity, and magnetic Barkhausen noise techniques, are also discussed. Barkhausen noise analysis...
Abstract
This article discusses the need of and the strain basis for residual stress measurements and describes the nature of residual stress fields. A generic destructive stress relief procedure is described along with the issues generally involved in each procedural step. The article presents the stress reconstruction equations to be used for computational reconstruction of the stress fields from the measured strains for the destructive methods. It provides information on the sectioning, material removal, strain measurement, and chemical methods of residual stress measurement. The article reviews the semidestructive methods of residual stress measurement: blind hole drilling and ring coring, spot annealing, and X-ray diffraction techniques. Nondestructive methods such as neutron diffraction, ultrasonic velocity, and magnetic Barkhausen noise techniques, are also discussed.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003251
EISBN: 978-1-62708-199-3
... Abstract X-ray diffraction (XRD) is the most extensively used method for identifying and characterizing various aspects of metals related to the arrangements and spacings of their atoms for bulk structural analysis. XRD techniques are also applicable to ceramics, geologic materials, and most...
Abstract
X-ray diffraction (XRD) is the most extensively used method for identifying and characterizing various aspects of metals related to the arrangements and spacings of their atoms for bulk structural analysis. XRD techniques are also applicable to ceramics, geologic materials, and most inorganic chemical compounds. This article describes the operating principles and types of XRD analyses, along with information about the threshold sensitivity and precision, limitations, sample requirements, and capabilities of related techniques. The necessary instrumentation for XRD analyses include the Debye-Scherrer camera and the X-ray diffractometer. The article also describes the uses of XRD analyses, such as the identification of phases or compounds in metals and ceramics; detection of order and disorder transformation; determination of lattice parameters and changes in lattice parameters due to alloying and temperature effects; measurement of residual stresses; characterization of crystallite size and perfection; characterization of preferred orientations; and determination of single crystal orientations.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003325
EISBN: 978-1-62708-176-4
... sectioning x-ray diffraction neutron diffraction Barkhausen noise analysis ultrasonic propagation analysis impact toughness mechanical testing nondestructive techniques residual stress shear testing tensile strength weldability testing welded joints IN WELDED STRUCTURES, the welds typically...
Abstract
This article discusses the standard test methods that can be applied to many types of welds: tension, bending, impact, and toughness testing. It provides information on four qualification stages, namely, the weld material qualification, base material qualification, the weld procedure qualification, and the weld service assessment. The article describes two general types of measurements for residual stress in welds: locally destructive techniques and nondestructive techniques. Locally destructive techniques include hole drilling, chip machining, and block sectioning. Nondestructive techniques include X-ray diffraction, neutron diffraction, Barkhausen noise analysis, and ultrasonic propagation analysis. The article concludes with an overview of weldability testing.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002363
EISBN: 978-1-62708-193-1
... force microscopy, and scanning acoustic microscopy. The article also reviews the X-ray diffraction technique used for determining the compositional changes, strain changes, and residual stress evaluation during the fatigue process. acoustic emission technique atomic force microscopy crack growth...
Abstract
This article describes the test techniques that are available for monitoring crack initiation and crack growth and for obtaining information on fatigue damage in test specimens. These techniques include optical methods, the compliance method, electric potential measurement, and gel electrode imaging methods. The article discusses the magnetic techniques that are primarily used as inspection techniques for detecting fatigue cracks in structural components. It details the principles and operation procedures of the liquid penetrant methods, positron annihilation techniques, acoustic emission techniques, ultrasonic methods, eddy current techniques, infrared techniques, exoelectron methods, and gamma radiography. The article explains the microscopy methods used to determine fatigue crack initiation and propagation. These include electron microscopy, scanning tunneling microscopy, atomic force microscopy, and scanning acoustic microscopy. The article also reviews the X-ray diffraction technique used for determining the compositional changes, strain changes, and residual stress evaluation during the fatigue process.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001298
EISBN: 978-1-62708-170-2
... the fundamental principles and presents examples of practical measurements for each method. coatings hole-drilling strain-gage mechanical deflection residual macrostress stress determination X-ray diffraction COATINGS AND THIN FILMS can be produced by a large variety of deposition techniques...
Abstract
This article provides a useful guide for measuring residual macrostress on coatings. The most commonly used measurement methods are mechanical deflection, X-ray diffraction, and hole-drilling strain-gage. After a discussion on the origins of residual stress, the article describes the fundamental principles and presents examples of practical measurements for each method.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001765
EISBN: 978-1-62708-178-8
... states in crystalline materials. The technique is based on x-ray methodology, which is discussed in the article “X-Ray Diffraction Residual Stress Techniques” in this Volume. However, differences in types of applications and experimental procedures arise due to differences in beam penetration, peak...
Abstract
Neutrons are a principal tool for the study of lattice vibrational spectra in materials. This article provides a detailed account of fission and spallation methods of neutron production that are capable of producing sufficient intensity to be useful in neutron scattering research. It describes the instrumentation required for, and advancements made in, neutron powder diffraction. The article further explains the texture and residual stress (macrostresses and microstresses) problems that are analyzed using the neutron powder diffraction method. It also outlines the single-crystal neutron diffraction technique, and provides examples of the applications of neutron diffraction.
Image
Published: 01 January 1994
Fig. 4 Measurement and analysis of surface damage using x-ray diffraction. (a) 38 mm (1.5 in.) 1018 steel cutoff sample showing burn-related discoloration. Two residual stress measurements by x-ray diffraction were made on the sample at the locations marked by the four concentric markers. (b
More
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001238
EISBN: 978-1-62708-170-2
... = 10 MPa (1.5 ksi). Additional information about these measurement techniques is available in Ref 28 . As demonstrated in Fig. 4 , measurement of residual stresses by x-ray diffraction now offers a practical way to quantify what used to be only a visual observation. A stress measurement...
Abstract
The concept of surface integrity for grinding operations can be extended to encompass six different groups of key factors: visual, dimensional, residual stress, tribological, metallurgical, and others. This article discusses the importance of these factors in the performance and behavior of finishing methods in various manufactured parts. Special emphasis is given to residual stresses and their influence on the final mechanical properties of a manufactured part.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006680
EISBN: 978-1-62708-213-6
...).The critical step in data analysis is still indexing of the Laue pattern. Additional information is available in the article “X-Ray Diffraction Residual-Stress Techniques” in this Division. Glancing-Angle Camera Several other camera geometries have been proposed in the past to overcome the limitations...
Abstract
X-ray powder diffraction (XRPD) techniques are used to characterize samples in the form of loose powders, aggregates of finely divided material or polycrystalline specimens. This article provides a detailed account of XRPD. It begins with a discussion on XRPD instrumentation and the techniques used to characterize samples. The article then describes the principles, advantages, and disadvantages of various types of powder diffractometers. A section on the Rietveld method of diffraction analysis is then presented. The article discusses various methods and procedures for qualifying and quantifying phase mixtures in powder samples. It provides information on typical sensitivity and experimental limits on precision of XRPD analysis and other systematic sources of errors that affect accuracy. Some of the factors pertinent to the estimation of crystallite size and defects are also presented. The article ends with a few application examples of XRPD.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001475
EISBN: 978-1-62708-173-3
... and classifies them as follows: Stress-relaxation techniques X-ray diffraction techniques Techniques using stress-sensitive properties Cracking techniques Classification of techniques for measuring residual stress Table 1 Classification of techniques for measuring residual stress...
Abstract
This article describes the formation of residual stresses and distortion, providing information on the techniques for measuring residual stresses. It presents a detailed discussion on the magnitude and distribution analysis of the residual stresses and distortion in weldments. The article briefly explains the effects of residual stresses and distortion on the brittle fracture and fatigue fracture of welded structures. It also provides information on the thermal treatments of weldments.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005617
EISBN: 978-1-62708-174-0
... available measurement techniques and classifies them as follows: Stress-relaxation techniques X-ray diffraction techniques Techniques using stress-sensitive properties Cracking techniques Classification of techniques for measuring residual stress Table 1 Classification of techniques...
Abstract
This article describes the formation of residual stresses and distortion and the techniques for measuring residual stresses. It provides a discussion on the magnitude and distribution analysis of residual stresses and distortion in weldments. The article considers the effects of residual stresses and distortion on the brittle fracture and fatigue fracture of welded structures. The thermal treatments of weldments are also discussed.
Image
Published: 15 December 2019
Fig. 4 Basic geometry of the single-angle technique for x-ray diffraction residual-stress measurement. β, angle of inclination of the instrument; 0, point at which a cone of diffracted radiation originates; 1 and 2, points of the diffracting crystals; S 1 and S 2 , the arc lengths along
More
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006252
EISBN: 978-1-62708-169-6
... technique Residual stress, MPa (ksi) mm in. °C °F … … 7010 Forging 124 × 156 × 550 4.9 × 6.1 × 21.7 470 880 Water, 20 °C (70 °F) Center hole drilling σ min = −270 (−39) … … 7010 Forging 60 × 60 × 16 2.4 × 2.4 × 0.6 475 890 Water, 20 °C (70 °F) X-ray diffraction σ min...
Abstract
The presence of macroscopic residual stresses in heat treatable aluminum alloys can give rise to machining distortion, dimensional instability, and increased susceptibility to in-service fatigue and stress-corrosion cracking. This article details the residual-stress magnitudes and distributions introduced into aluminum alloys by thermal operations associated with heat treatment. The available technologies by which residual stresses in aluminum alloys can be relieved are also described. The article shows why thermal stress relief is not a feasible stress-reduction technology for precipitation-hardened alloys. It examines the consequences of aging treatments on the residual stress, namely, annealing, precipitation heat treatment, and cryogenic treatment. The article provides information on uphill quenching, which attempts to reverse thermal gradients encountered during quenching. It examines how quench-induced residual stresses in heat treatable aluminum alloys are reduced when sufficient load is applied to cause plastic deformation. The article also shows how plastic deformation reduces residual stress.
Image
Published: 01 January 1986
Fig. 4 Basic geometry of the single-angle technique for x-ray diffraction residual stress measurement. N p , normal to the lattice planes; N s , normal to the surface. See text for a discussion of other symbols. Source: Ref 2
More
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006643
EISBN: 978-1-62708-213-6
... Residual-Stress Techniques” in this Volume. Refinement and Rietveld Refinement When dealing with diffraction data, the terms (structure) refinement and Rietveld refinement are often met, respectively, in the single-crystal and the powder diffraction communities. X-ray diffraction...
Abstract
This article describes the methods of X-ray diffraction analysis, the types of information that can be obtained, and its interpretation. The discussion covers the basic theories of X-rays and various types of diffraction experiments, namely single-crystal methods for polychromatic and monochromatic beams, powder diffraction methods, and the Rietveld method.
1