Skip Nav Destination
Close Modal
By
Stephen D. Cramer, Bernard S. Covino, Jr., Gordon R. Holcomb, Małgorzata Ziomek-Moroz, Jack Tinnea
By
F. Zhang, Y. Yang, W.S. Cao, S.L. Chen, K.S. Wu ...
By
Ole Runar Myhr, Øystein Grong
By
S.L. Semiatin, D.U. Furrer
By
J.W. Yoon, F. Barlat
By
Sunil Kishore Chakrapani, Leonard J. Bond, Rachel S. Edwards
By
A. Jacot, Ch.-A. Gandin
By
Sean G. Corcoran
Search Results for
Wagner Theory
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 91
Search Results for Wagner Theory
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003589
EISBN: 978-1-62708-182-5
... of amorphous and epitaxy oxide layers and presents equations for various oxidation reaction rates. The article reviews different theories to describe the oxidation mechanism. These include the Cabrera-Mott, Hauffe-IIschner, Grimley-Trapnell, Uhlig, and Wagner theories. Schottky defect Frenkel defect...
Abstract
This article describes the Schottky defect and the Frenkel defect in oxides. It provides information on the p-type metal-deficit oxides and n-type semiconductor oxides. The article discusses diffusion mechanisms and laws of diffusion proposed by Fick. It explains the oxide texture of amorphous and epitaxy oxide layers and presents equations for various oxidation reaction rates. The article reviews different theories to describe the oxidation mechanism. These include the Cabrera-Mott, Hauffe-IIschner, Grimley-Trapnell, Uhlig, and Wagner theories.
Book Chapter
Conventions and Definitions in Corrosion and Oxidation
Available to PurchaseSeries: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003709
EISBN: 978-1-62708-182-5
... the valence band to the conduction band create e ′ and h · pairs. This typically occurs in stoichiometric compounds. Parabolic Rate Equations The oxidation of many metals at high temperatures can be described with parabolic kinetics. Often Wagner's oxidation theory is invoked to explain the behavior...
Abstract
This article presents common conventions and definitions in corrosion, electrochemical cells, cathodic protection (CP), electricity, and oxidation. Evans diagrams for impressed current CP in neutral or basic environment and galvanic or sacrificial CP, in both neutral or basic environment and acidic environment, are illustrated.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005410
EISBN: 978-1-62708-196-2
... Abstract This article describes the results obtained by Volmer, Weber, Farkas, Becker, and Doring, which constitute the classical nucleation theory. These results are the predictions of the precipitate size distribution, steady-state nucleation rate, and incubation time. The article reviews...
Abstract
This article describes the results obtained by Volmer, Weber, Farkas, Becker, and Doring, which constitute the classical nucleation theory. These results are the predictions of the precipitate size distribution, steady-state nucleation rate, and incubation time. The article reviews a nucleating system as a homogeneous phase using the classical nucleation theory, along with heterophase fluctuations that led to the formation of precipitates. It discusses the gas cluster dynamics using the kinetic approach to describe nucleation. The article presents key parameters, such as cluster condensation and evaporation rates, to describe the time evolution of the system. The predictions and extensions of the classical nucleation theory are discussed. The article also provides the limitations of classical nucleation theories in cluster dynamics.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003590
EISBN: 978-1-62708-182-5
... of parabolic, selective oxidation of a binary A-B alloy was proposed by Wagner for a binary nickel-platinum alloy ( Ref 15 ). Wagner combined his theory of metal oxidation with the Darken model of interdiffusion in binary alloys ( Ref 16 ), and obtained an analytical solution for the kinetics of oxidation...
Abstract
This article examines the characteristics and behavior of scale produced by various types of oxidation. The basic models, concepts, processes, and open questions for high-temperature gaseous corrosion are presented. The article describes the development of geometrically induced growth stresses, transformation stresses, and thermal stresses in oxide scales. It discusses the ways in which stresses can be relieved. The article provides information on catastrophic oxidation, internal oxidation, sulfidation, alloy oxidation, selective oxidation, and concurrent oxidation. It illustrates the relationships between scale morphologies on binary alloys and concludes with a discussion on metal dusting and chlorine corrosion.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003637
EISBN: 978-1-62708-182-5
.... According to the theory, this hydrogen is stripped off by the bacteria, a process known as cathodic depolarization; this process allows corrosion to continue. It is now recognized that this original mechanism, although it undoubtedly plays an important role, does not represent the entire process ( Fig. 11...
Abstract
This article focuses on the effects of microscopic organisms and the by-products they produce on the electrochemical corrosion of metals. The general characteristics of the microorganisms that facilitate their influence on the electrochemistry of corrosion are discussed. The industries most often reported as being affected by microbiological corrosion are listed, along with the organisms usually implicated in the attack. The article explains that the influence of organisms can be addressed successfully for a corrosion control program by using four types of evidence: metallurgical, microbiological, chemical, and electrochemical. It provides information on the microbiologically influenced corrosion (MIC) of irons and steels, passive alloys (austenitic stainless steels), aluminum alloys, copper alloys, and composites. The article reviews the formation of microbial biofilms and macrofouling films. It also describes the general approaches taken to prevent MIC.
Book Chapter
Commercial Alloy Phase Diagrams and Their Industrial Applications
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005511
EISBN: 978-1-62708-197-9
... driving force for each event, is integrated with two kinetic models; one is the model based on the Kampmann-Wagner model in the numerical framework (KWN) ( Ref 58 ), and the other is the fast-acting model ( Ref 59 ). The same set of equations is used to describe the nucleation and growth of these two...
Abstract
This article focuses on the industrial applications of phase diagrams. It presents examples to illustrate how a multicomponent phase diagram calculation can be readily useful for industrial applications. The article demonstrates how the integration of a phase diagram calculation with kinetic and microstructural evolution models greatly enhances the power of the CALPHAD approach in materials design and processing development. It also discusses the limitations of the CALPHAD approach.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006320
EISBN: 978-1-62708-179-5
... of alloys (cast iron) by W. Oldfield England 1969 Patent rights for the production of cast iron with at least 50% vermicular graphite granted to Schelleng United States 1972 Commercialization of austempered ductile iron: a 0.5 kg (1 lb) crankshaft for a refrigerator compressor produced at Wagner...
Abstract
This article provides a short time travel of the evolution of cast iron from witchcraft to virtual cast iron, a road paralleled by the gigantic stride from a low-quality, corrupt metal to the high-tech material that it is today. It presents a chronological list of developments and use of cast iron during prehistory, antiquity, and the medieval ages in a table. The earliest successful iron founding is generally credited to the ancient Mesopotamian civilizations many centuries before Christ. The article discusses the evolution of early cast iron in Mesopotamia and China, as well as in Europe in the medieval ages. It provides information on the applications of cast iron as a high-tech, economical, and modern material.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003642
EISBN: 978-1-62708-182-5
... is the development of a theory, a coherent body of knowledge that can be used to provide explanations and predictions for a specific domain of knowledge. Theory development is a complex process involving three principal activities: theory formation, theory revision, and paradigm shift. A theory is first proposed...
Abstract
Corrosion modeling is an essential benchmarking element for the selection and life prediction associated with the introduction of new materials or processes. These models are most naturally expressed in terms of differential equations or in other nonexplicit forms of mathematics. This article discusses the principles and applications of various models developed for understanding the corrosion mechanism. These models include mechanistic models, including Pourbaix model, thermophysical module, electrochemical module, and ion association model; risk-based models; and knowledge models. The risk-based model and knowledge models are illustrated with examples for better understanding. The article also describes boundary-element modeling and pitting corrosion fatigue models.
Book Chapter
Modeling of Metallurgical Microstructure Evolution in Fusion Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005599
EISBN: 978-1-62708-174-0
... Kinetics The classical theory for particle coarsening was developed independently by Lifshitz and Slyozov ( Ref 18 ) and by Wagner ( Ref 19 ). According to their analysis, the kinetics is controlled by volume diffusion through the matrix. Provided that no solute is lost to the surrounding matrix...
Abstract
This article focuses on the general internal state variable method, and its simplification, for single-parameter models, in which the microstructure evolution may be treated as an isokinetic reaction. It explains that isokinetic microstructure models are applied to diffusional transformations in fusion welding, covering particle dissolution, growth, and coarsening of precipitates in the heat-affected zone. The article discusses the versatility of the internal state variable approach in modeling of nonisothermal transformations for various materials and processes. It describes the process models applied to predict the microstructure evolution in Al-Mg-Si alloys during multistage thermal processing involving heat treatment and welding. The article also provides information on the microstructure models exploited in engineering design to optimize the load-bearing capacity of welded aluminum components.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006117
EISBN: 978-1-62708-175-7
... and interfacial forces at the point where the grain boundary intersects the pore. γ sv is the surface tension, γ gb is the grain boundary tension, and ψ is the dihedral angle. Theoretical Analysis of Solid-State Sintering A comprehensive theory of sintering should be capable of describing the entire...
Abstract
Sintering is a thermal treatment process in which a powder or a porous material, already formed into the required shape, is converted into a useful article with the requisite microstructure. Sintering can be classified as solid-state, viscous, liquid-phase, and pressure-assisted (or pressure) sintering. This article provides information on the mechanisms and theoretical analysis of sintering and focuses on the types, mechanisms, process and microstructural variables, computer simulation, stages, and fundamentals of densification and grain growth of solid-state sintering and liquid-phase sintering. It describes the models for viscous sintering and the methods used in pressure-assisted sintering, namely, uniaxial hot pressing, hot isostatic pressing, sinter forging, and spark plasma sintering.
Book Chapter
Modeling of Microstructure Evolution during the Thermomechanical Processing of Titanium Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005409
EISBN: 978-1-62708-196-2
..., and Wagner (LSW) coarsening-rate constant k MLSW LSW coarsening-rate constant modified for volume-fraction effects L b length of lamellar branch N nucleation rate during phase transformation m strain-rate sensitivity of the flow stress m g slope of alpha-beta interface groove...
Abstract
This article focuses on the modeling of microstructure evolution during thermomechanical processing in the two-phase field for alpha/beta and beta titanium alloys. It also discusses the mechanisms of spheroidization, the coarsening, particle growth, and phase decomposition in titanium alloys, with their corresponding equations.
Book Chapter
Modeling and Simulation of the Forming of Aluminum Sheet Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005168
EISBN: 978-1-62708-186-3
... them, Cazacu and Barlat ( Ref 39 ) introduced a general formulation that originated from the rigorous theory of representation of tensor functions. However, with this approach, the conditions for the convexity of the yield surface are difficult to impose. As mentioned previously in this section...
Abstract
This article discusses the numerical simulation of the forming of aluminum alloy sheet metals. The macroscopic and microscopic aspects of the plastic behavior of aluminum alloys are reviewed. The article presents constitutive equations suitable for the description of aluminum alloy sheets. It explains testing procedures and analysis methods that are used to measure the relevant data needed to identify the material coefficients. The article describes the various formulations of finite element methods used in sheet metal forming process simulations. Stress-integration procedures for both continuum and crystal-plasticity mechanics are also discussed. The article also provides various examples that illustrate the simulation of aluminum sheet forming.
Book Chapter
Rayleigh Wave Nondestructive Evaluation for Defect Detection and Materials Characterization
Available to PurchaseSeries: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006461
EISBN: 978-1-62708-190-0
...-breaking cracks or subsurface material properties ( Ref 3 ). The theory of wave interaction with surface features is challenging, and there are only a limited number of closed-form analytical solutions; perturbation methods can be used where the features are small compared to the wavelength, while...
Abstract
This article provides an overview of the characteristics of Rayleigh waves plus methods for generation and detection of waves, including using piezoelectric transducers or noncontact techniques such as lasers, electromagnetic acoustic transducers, or air-coupled ultrasonics. It reviews the methods for using Rayleigh waves for defect detection and materials characterization, alongside nonlinear ultrasonic inspection and surface acoustic wave (SAW) microscopy. The article concludes with information on the standards that use Rayleigh waves for nondestructive evaluation (NDE) of different structures.
Book Chapter
Formation of Microstructures, Grain Textures, and Defects during Solidification
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005518
EISBN: 978-1-62708-197-9
... eutectic growth theory ( Ref 33 ) and is briefly summarized in the section “Eutectics and Other Multiphase Microstructures” in this article. By coupling these equations with a numerical calculation of heat diffusion in the casting, the cooling curve and the average grain size can be calculated...
Abstract
This article reviews the various aspects of the simulation of solidification microstructures and grain textures. It describes the grain structures and morphology of dendrites or eutectics that compose the internal structure of the grains. A particular emphasis has been put on the simulation of defects related to grain textures and microstructures. The article provides information on the application of the most important simulation approaches and the status of numerical simulation.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003644
EISBN: 978-1-62708-182-5
... available for laboratory studies of corrosion phenomena. Fundamentals The basis of all electrochemical techniques lies in the principle of mixed-potential theory, which was clearly established in a classic paper published in 1938 ( Ref 1 ). It was demonstrated that uniform corrosion occurs when...
Abstract
This article reviews the fundamentals of electrochemical corrosion test methods. The features and requirements of the instrumentation needed for an electrochemical test are briefly discussed. The article provides a discussion on the various electrochemical techniques and tests available for laboratory studies of corrosion phenomena. The techniques and tests include no-applied-signal tests, small-signal polarization tests, large-signal polarization tests, scanning electrode techniques, and miscellaneous techniques.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005415
EISBN: 978-1-62708-196-2
... counterparts ( Ref 7 , 8 ) or from microscopic theories in statistical mechanics (for example, Ref 9 , 10 ). It accounts for the change in atomic bonding from one location to its neighboring locations. In phase-field models where the phase fields are physical order parameters, minimization of the total free...
Abstract
This article discusses the fundamental aspects of phase-field microstructure modeling. It describes the evolution of microstructure modeling, including nucleation, growth, and coarsening. The article reviews two approaches used in the modeling nucleation of microstructure: the Langevin force approach and explicit nucleation algorithm. Calculation of activation energy and critical nucleus configuration is discussed. The article presents the deterministic phase-field kinetic equations for modeling growth and coarsening of microstructure. It also describes the material-specific model inputs, chemical free energy and kinetic coefficients, for phase-field microstructure modeling. The article provides four examples that illustrate some aspects of phase-field modeling.
Book Chapter
Extended X-Ray Absorption Fine Structure
Available to PurchaseSeries: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006665
EISBN: 978-1-62708-213-6
... , 1975 , p 1361 13. Kincaid B.M. , Ph.D. thesis, Stanford University , Stanford, CA , 1975 14. Van Ordstrand R.A. , in Non-Crystalline Solids , Frechette V.D. , Ed., John Wiley & Sons , 1960 , p 108 15. Nelson W.F. , Siegel I. , and Wagner R.W...
Abstract
This article provides a detailed account of extended x-ray absorption fine structure (EXAFS). It begins with a description of the fundamentals of EXAFS, providing information on the physical mechanism, single-scattering approximation, and multiple-scattering effects. This is followed by a discussion on the use of synchrotron radiation as an X-ray source for EXAFS. Data-reduction procedures used to extract EXAFS signals are then described. The article also provides information on the analysis of x-ray absorption near-edge structure spectrum and ends with a discussion on the unique features and applications of EXAFS.
Book Chapter
Effects of Metallurgical Variables on Dealloying Corrosion
Available to PurchaseSeries: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003620
EISBN: 978-1-62708-182-5
... Steels , Corros. Sci. , Vol 28 , 1988 , p 1183 – 1187 10.1016/0010-938X(88)90127-8 47. Wagner K. , Brankovic S.R. , Dimitrov N. , and Sieradzki K. , Dealloying Below the Critical Potential , J. Electrochem. Soc. , Vol 144 , 1997 , p 3545 – 3555 10.1149/1.1838046...
Abstract
Dealloying is a corrosion process in which one or more elements are selectively dissolved, leaving behind a porous residue of the remaining elements. This article describes the dealloying in various systems, namely, dezincification, graphitic corrosion, dealuminification, and noble metal alloys dealloying. The current-potential behavior of a binary alloy undergoing selective dissolution is reviewed. The article highlights the four mechanisms required for the formation of porous metals: ionization-redeposition, surface diffusion, volume diffusion, and percolation model of selective dissolution.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006829
EISBN: 978-1-62708-295-2
... “Prevention of Fretting Damage” in this article. This theory extends the possibility of fretting damage to materials other than metals. With the increased use of polymers, both simple and reinforced, in addition to ceramics, this is an area in which further examples of a somewhat different nature are likely...
Abstract
Fretting is a wear phenomenon that occurs between two mating surfaces; initially, it is adhesive in nature, and vibration or small-amplitude oscillation is an essential causative factor. Fretting generates wear debris, which oxidizes, leading to a corrosion-like morphology. This article focuses on fretting wear related to debris formation and ejection. It reviews the general characteristics of fretting wear, with an emphasis on steel. The review covers fretting wear in mechanical components, various parameters that affect fretting; quantification of wear induced by fretting; and the experimental results, map approach, measurement, mechanism, and prevention of fretting wear. This review is followed by several examples of failures related to fretting wear.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001771
EISBN: 978-1-62708-178-8
... tungsten to substantiate the cobalt diffusion theory. Fig. 12 XPS surveys for a heavily TaC-coated sample after 20 min of argon ion-sputtering. (a) Broad scan. (b) Multiplexed cobalt “window.” Note the significant increase in cobalt intensity, yet no detectable tungsten. A indicates an Auger...
Abstract
This article provides a detailed account of the principles, instrumentation,and applications of x-ray photoelectron spectroscopy (XPS), a technique used for elemental and compositional analysis of surfaces and thin films. It reviews the nomenclature of energy states and sensitivity of electrons at the surface that are capable of producing peaks in XPS. Additionally, it presents information on the instrumentation and the preparation and mounting of samples for XPS analysis. The article explains qualitative analysis, namely, measuring of shifts in the binding energy of core electrons, multiplet splitting, and the Auger parameter; and quantitative analysis such as depth analysis carried out using XPS. It also discusses the applications of XPS with examples.
1