Skip Nav Destination
Close Modal
Search Results for
Vickers hardness testing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 68 Search Results for
Vickers hardness testing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004043
EISBN: 978-1-62708-185-6
...). Conversely, identical indentation diameters for both types of ball will correspond to different Vickers and Rockwell values. Thus, if indentation in two different specimens both are 2.75 mm diameter (495 HB), the specimen tested with a standard ball has a Vickers hardness of 539, whereas the specimen tested...
Abstract
Hardness conversions are empirical relationships that are defined by conversion tables limited to specific categories of materials. This article summarizes hardness conversion formulas for various materials in a table. It tabulates the approximate Rockwell B and Rockwell C hardness conversion numbers for nonaustenitic steels. The article lists the approximate equivalent hardness numbers for Brinell hardness numbers and Vickers hardness numbers for steel in tables. The tables are also outlined in a graphical form.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004044
EISBN: 978-1-62708-185-6
..., E, and H scales. For hardness testing of thin gages of aluminum, the 15T and 30T scales of the Rockwell superficial tester are recommended. Source: ASTM E 140 Table 2 Approximate equivalent hardness numbers for wrought coppers (>99% Cu, alloys C10200 through C14200) Vickers hardness...
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003241
EISBN: 978-1-62708-199-3
... pyramid ( Fig. 8 ) geometry that would produce hardness numbers nearly identical to Brinell numbers within the range of both. This decision was very wise, as it made the Vickers test very easy to adopt. Fig. 8 Schematic representation of the square-base pyramidal diamond indenter used in a Vickers...
Abstract
This article reviews the various types of mechanical testing methods, including hardness testing; tension testing; compression testing; dynamic fracture testing; fracture toughness testing; fatigue life testing; fatigue crack growth testing; and creep, stress-rupture, and stress-relaxation testing. Shear testing, torsion testing, and formability testing are also discussed. The discussion of tension testing includes information about stress-strain curves and the properties described by them.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003057
EISBN: 978-1-62708-200-6
.... The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and...
Abstract
This article describes testing and characterization methods of ceramics for chemical analysis, phase analysis, microstructural analysis, macroscopic property characterization, strength and proof testing, thermophysical property testing, and nondestructive evaluation techniques. Chemical analysis is carried out by X-ray fluorescence spectrometry, atomic absorption spectrophotometry, and plasma-emission spectrophotometry. Phase analysis is done by X-ray diffraction, spectroscopic methods, thermal analysis, and quantitative analysis. Techniques used for microstructural analysis include reflected light microscopy using polarized light, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis of X-rays, and wavelength dispersive analysis of X-rays. Macroscopic property characterization involves measurement of porosity, density, and surface area. The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and glass and measurement of these properties as a function of temperature.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.9781627081764
EISBN: 978-1-62708-176-4
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009008
EISBN: 978-1-62708-185-6
... 3 mm (0.12 in.) apart with a carbide-tipped height gage. Four gage points are indented at midheight of the cylindrical specimen with a Vickers or diamond brale hardness indenter. Fig. 3 Grids for strain measurements on upset cylinders Scribed lines or hardness indentations should...
Abstract
A cylindrical specimen compressed with friction at the die surfaces does not remain cylindrical in shape but becomes bulged or barreled. Tensile stresses associated with the bulging surface make the upset test a candidate for workability testing. This article discusses test-specimen geometry and friction conditions; strain measurements; crack detection; and material inhomogeneities, which are to be considered for performing cold upset testing. It describes test characteristics in terms of deformation, free-surface strains, and stress states for performing cylindrical compression tests. The article illustrates the fracture loci in cylindrical, tapered, and flanged upset-test specimens of aluminum alloy and type 1045 cold-finished steel.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001243
EISBN: 978-1-62708-170-2
... distorts the base metal and is influenced by it, which usually results in low hardness readings. The most reliable and most widely accepted hardness values are those obtained with the Vickers 136 diamond pyramid indenter or the Knoop indenter. With these, the hardness test must be made on a carefully...
Abstract
Hard chromium plating is produced by electrodeposition from a solution containing chromic acid and a catalytic anion in proper proportion. This article presents the major uses of hard chromium plating, and focuses on the selection factors, plating solutions, solution and process control, equipment, surface preparation, and crack patterns and other characteristics of hard chromium plating. It offers recommendations for the design and use of plating racks, describes the problems encountered in hard chromium plating, and their corrective procedures. The article provides information on the removal of chromium plate from coated metals, recovery and disposal of wastes, and stopoff media for selective plating.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001297
EISBN: 978-1-62708-170-2
... many aspects the well-known hardness measuring techniques, such as the Vickers and Brinell hardness tests. However, in the “nanoindentation” technique, the indentations extend only to extremely shallow depths, often as low as nanometers. A hard indenter, usually an accurately ground diamond, is...
Abstract
This article focuses on the evaluation of mechanical properties of freestanding films and films adherent to their substrates. Common methods of testing freestanding films, including uniaxial tensile testing, uniaxial creep testing, biaxial testing, and beam-bending methods, are discussed. For films which are adherent to their substrates, indentation testing is used to evaluate hardness, creep, and strength.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003988
EISBN: 978-1-62708-185-6
...-carbon levels. Vickers hardness was determined at a 30 kgf load Tempering curves (core hardness versus carbon content and tempering temperature) are presented in Fig. 21 for P/F-2000 and P/F-4600 alloys. The curves for P/F-4600 cover ruling sections of 10 mm (0.40 in.) to 25.4 mm (1.0 in...
Abstract
Powder forging is an extension of the conventional press and sinter powder metallurgy process, which is recognized as an effective technology for producing a variety of parts to net or near-net shape. This article focuses on the material considerations, such as powder characteristics, alloy development, and inclusion assessment; and process considerations, such as process stages, tool design, and secondary operations; of ferrous alloy powder forging. The mechanical properties of powder forged materials are also reviewed. The article discusses the quality assurance tests for powder forged materials: the part dimensions and surface finish measurement, magnetic particle inspection, metallographic analysis, and nondestructive testing. It concludes with a discussion on the applications of powder forged parts with examples.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006671
EISBN: 978-1-62708-213-6
... shows the resistance of the ceramic to catastrophic failure. A ceramic can be indented with either a Knoop or Vickers shaped diamond indenter and the indentation size measured to give a hardness value. Hardness is related to properties such as wear resistance, which is often measured as the material...
Abstract
The characterization, testing, and nondestructive evaluation of ceramics and glasses are vital to manufacturing control, property improvement, failure prevention, and quality assurance. This article provides a broad overview of characterization methods and their relationship to property control, both in the production and use of ceramics and glasses. Important aspects covered include the means for characterizing ceramics and glasses, the corresponding rationale behind them, and relationship of chemistry, phases, and microconstituents to engineering properties. The article also describes the effects that the structure of raw ceramic materials and green products and processing parameters have on the ultimate structure and properties of the processed piece. The effects that trace chemistry and processing parameters have on glass properties are discussed. The article describes mechanical tests and failure analysis techniques used for ceramics.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005654
EISBN: 978-1-62708-198-6
... analysis was performed on the broken implants, and all were seen to be within the ASTM specifications in terms of Vickers hardness, oxide inclusion content, grain size, and δ-ferrite content. Pohler ( Ref 185 ) indicated, in the vast majority of cases, failure of long-bone implants were caused by wrong...
Abstract
This article describes some of the mechanical/ electrochemical phenomena related to the in vivo degradation of metals used for biomedical applications. It discusses the properties and failure of these materials as they relate to stress-corrosion cracking (SCC) and corrosion fatigue (CF). The article presents the factors related to the use of surgical implants and their deterioration in the body environment, including biomedical aspects, chemical environment, and electrochemical fundamentals needed for characterizing CF and SCC. It provides a discussion on the use of metallic biomaterials in surgical implant applications, such as orthopedic, cardiovascular surgery, and dentistry. It addresses the key issues related to simulation of the in vivo environment, service conditions, and data interpretation. Theses include frequency of dynamic loading, electrolyte chemistry, applicable loading modes, cracking mode superposition, and surface area effects. The article describes the fundamentals of CF and SCC, testing methodology, and test findings from laboratory, in vivo, and retrieval studies.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005323
EISBN: 978-1-62708-187-0
... J431 ( Ref 3 ) classifies sand-molded gray cast irons used by the automotive and allied industries. It defines iron grades by a test bar tensile strength/Brinell hardness ratio, hardness grades by hardness alone, and casting grades by a combination of the iron grade, hardness grade, and special...
Abstract
This article begins with an overview of classes and applications of gray iron. It discusses the castability of gray iron in terms of section sensitivity and fluidity. The article provides information on the dimensions of prevailing sections recommended for gray irons and reviews the properties and specifications of test bar. It discusses the properties of gray iron, such as fatigue limit, pressure tightness, impact resistance, machinability, and dimensional stability, at both room and elevated temperature. Wear behavior of gray iron castings during sliding contact under conditions of normal lubrication is also discussed. The article reviews the use of alloys and heat treatment to modify as-cast properties. It concludes with information on physical properties of gray iron castings.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003104
EISBN: 978-1-62708-199-3
..., when expressed in this manner, the results are not materials constants, because they are based on experimental conditions. Several models of sliding wear lead to the prediction for volume change: Δ V = k L S / 3 H where L is load, S is sliding distance, H is Vickers hardness...
Abstract
Wear of metals occurs by plastic displacement of surface and near-surface material, and by detachment of particles that form wear debris. This article presents a table that contains the classification of wear. It describes the testing and evaluation of wear and talks about the abrasive wear, lubrication and lubricated wear, and selection of steels for wear resistance. The article discusses the effect of alloying elements, composition, and mechanical properties of carbon and low-alloy steels at elevated temperatures. It talks about the fatigue resistance characteristics of steels, and describes the forms of embrittlement associated with carbon and low-alloy steels. The article provides information on the effect of composition, manufacturing practices, and microstructure on notch toughness of steels. Finally, it explains the effects of alloy elements, inclusion content, microstructure and heat treatment on fracture toughness of steels.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005417
EISBN: 978-1-62708-196-2
... depending on the state of the secondary scale at the roll gap HV Vickers hardness of the contacting material HV ox Vickers hardness of the oxide scale h exit Scale thickness at the exit from the roll gap h min Oil film thickness h o Interface heat-transfer coefficient h o...
Abstract
This article examines the deformation processes in metal-forming operations and considers the effects introduced by scale factors when microforming. It discusses the process parameters and variables affecting surface interactions, including temperature, speed, reduction, stiffness, and dynamic response of equipment. The article reviews the determination of friction coefficient using laboratory monitoring methods, indirect measurements, and the inverse method. It considers the determination of the interface heat-transfer coefficient by using the ring test and computer simulations. The article describes the behavior of oxide scale on the surface of hot metal undergoing thermomechanical processing. It concludes with information on the effects of process and material parameters on interfacial phenomena.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005343
EISBN: 978-1-62708-187-0
... localized heat treatments, such as carburizing or induction hardening, have been ted on the failed casting. Knoop or Vickers microhardness tests can be conducted, but the choice of which test method to use is dictated by the hardness conversion tables available for evaluation of the test results. The ASTM...
Abstract
This article reviews the failure analysis process with specific reference to the considerations that should be addressed when a casting has failed. It describes the failure analysis methodology for three failed cast components: an aluminum bracket, a bronze suction roll, and a steel automotive spindle. The article discusses failure analysis investigation by obtaining casting background information, planning the evaluation and selecting the appropriate casting for analysis, conducting a preliminary examination, conducting the proper material evaluations, and thoroughly evaluating the test data. It concludes with information on case studies that show how the methodology is adapted for differing materials, failure mechanisms, and failure circumstances.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003063
EISBN: 978-1-62708-200-6
... Abstract Ceramic-matrix composites (CMCs) are being developed for a number of high-temperature and high-performance applications in industrial, aerospace, and energy conservation sectors. This article focuses on processing, fabrication, testing, and characterization methods of CMCs, namely...
Abstract
Ceramic-matrix composites (CMCs) are being developed for a number of high-temperature and high-performance applications in industrial, aerospace, and energy conservation sectors. This article focuses on processing, fabrication, testing, and characterization methods of CMCs, namely, discontinuously reinforced composites and continuous-fiber-reinforced composites. Processing methods include cold pressing, sintering, hot pressing, reaction bonding, melt infiltration, directed metal oxidation, sol-gel and polymer pyrolysis, self-propagating high-temperature synthesis and joining. A table summarizes the properties of various ceramic reinforcements and industrial applications of these composites.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003826
EISBN: 978-1-62708-183-2
... (1340 °F) 6.99×10 5 At 2000 K (3140 °F) 6.96×10 5 Hardness Brinell, MN/m 2 1700 Mohs 5.5 Vickers, MN/m 2 1760 Source: Ref 6 Table 2 Typical mechanical properties for fully annealed products Temperature Test direction Ultimate tensile strength Yield...
Abstract
This article describes the processes involved in the production of hafnium and its alloys. It discusses the physical, mechanical and chemical properties of hafnium. The aqueous corrosion testing of hafnium and its alloys is detailed. The article reviews the corrosion resistance of hafnium in specific media, namely, water, steam, hydrochloric acid, nitric acid, sulfuric acid, alkalis, organics, molten metals, and gases. Forms of corrosion, namely, galvanic corrosion, crevice corrosion, and pitting corrosion are included. The article explains the corrosion of hafnium alloys such as hafnium-zirconium alloys and hafnium-tantalum alloys. It also deals with the applications of hafnium and its alloys in the nuclear and chemical industries.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003152
EISBN: 978-1-62708-199-3
... with values ranging from 83.0 HRA for high-cobalt coarse-grain grades to 93.0 HRA for low-cobalt fine-grain grades. Vickers diamond pyramid hardness (HV) is widely used in Europe; values range from 800 to 2000 kg/mm 2 using a 30 kg load. The precision and accuracy of hardness testing is influenced...
Abstract
Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a ductile metal binder. Cermet refers to a composite of a ceramic material with a metallic binder. This article discusses the manufacture, composition, classifications, and physical and mechanical properties of cemented carbides. It describes the application of hard coatings to cemented carbides by physical or chemical vapor deposition (PVD or CVD). Tungsten carbide-cobalt alloys, submicron tungsten carbide-cobalt alloys, and alloys containing tungsten carbide, titanium carbide, and cobalt are used for machining applications. The article also provides an overview of cermets used in machining applications.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006649
EISBN: 978-1-62708-213-6
... releases the stresses and minimizes the carbon and oxygen content, so that the iron powder softens. To measure particle hardness, indentation hardness tests, such as the Vickers microhardness (MHV) test, can be used. Under an optical measurement system, a pyramidal-pointed diamond is impressed into the...
Abstract
This article uses metal and alloy powders as examples to briefly discuss how to perform the characterization of powders. It begins by reviewing some of the techniques involved in the sampling of powders to ensure accurate characterization. This is followed by a discussion on the important properties to characterize powders, namely the particle size, surface area, density, porosity, particle hardness, compressibility, green strength, and flowability. For characterization of powders, both individual particles and bulk powders are used to evaluate their physical and chemical properties. The article also discusses the important characteristics and compositions of powder as well as impurities that directly affect powder properties. It ends with a description of the ignition and dust-explosion characteristics of organic and metal powders.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003201
EISBN: 978-1-62708-199-3
... readings and those converted from microhardness values for five gray irons of different carbon equivalents. Hardness measurements were taken at two laboratories after quenching and after tempering of each iron. The data in Fig. 1 (a) show why the observed values obtained by conventional hardness testing...
Abstract
Cast irons may be compared with steels in their reactions to hardening. However, because cast irons (except white iron) contain graphite and substantially higher percentages of silicon, they require higher austenitizing temperatures. This article describes the effect of heat treatment processes such as annealing, normalizing, surface hardening, tempering, stress relieving, quenching, and austempering, on hardness and tensile properties of cast irons, namely gray irons, ductile irons, malleable irons, and austenitic irons.