Skip Nav Destination
Close Modal
Search Results for
Vickers diamond indenters
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 22 Search Results for
Vickers diamond indenters
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003059
EISBN: 978-1-62708-200-6
... Abstract This article provides crystallographic and engineering data for single oxide ceramics, zirconia, silicates, mullite, spinels, perovskites, borides, carbides, silicon carbide, boron carbide, tungsten carbide, silicon-nitride ceramics, diamond, and graphite. It includes data on crystal...
Abstract
This article provides crystallographic and engineering data for single oxide ceramics, zirconia, silicates, mullite, spinels, perovskites, borides, carbides, silicon carbide, boron carbide, tungsten carbide, silicon-nitride ceramics, diamond, and graphite. It includes data on crystal structure, density, mechanical properties, physical properties, electrical properties, thermal properties, and magnetic properties.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001320
EISBN: 978-1-62708-170-2
..., i Σ l i , in a P vs. i Σ l i plot obtained in indentation tests. Source: Ref 44 Table 2 Typical properties of cermets Composition Vickers hardness, kg/mm 2 Modulus of rupture, MPa Fracture toughness K Ic , MPa m Young's modulus, GPa (Ti,Mo/W...
Abstract
The classes of tool materials for machining operations are high-speed tool steels, carbides, cermets, ceramics, polycrystalline cubic boron nitrides, and polycrystalline diamonds. This article discusses the expanding role of surface engineering in increasing the manufacturing productivity of carbide, cermet, and ceramic cutting tool materials used in machining operations. The useful life of cutting tools may be limited by a variety of wear processes, such as crater wear, flank wear or abrasive wear, builtup edge, depth-of-cut notching, and thermal cracks. The article provides information on the applicable methods for surface engineering of cutting tools, namely, chemical vapor deposited (CVD) coatings, physical vapor deposited coatings, plasma-assisted CVD coatings, diamond coatings, and ion implantation.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004043
EISBN: 978-1-62708-185-6
... Brinell hardness numbers for steel Brinell indentation diam, mm Brinell hardness number (a) 3000 kgf load, 10 mm ball (a) Vickers hardness No. Rockwell hardness No. Rockwell superficial hardness No., diamond indenter Knoop hardness No., 500 gf load and greater Scleroscope hardness No...
Abstract
Hardness conversions are empirical relationships that are defined by conversion tables limited to specific categories of materials. This article summarizes hardness conversion formulas for various materials in a table. It tabulates the approximate Rockwell B and Rockwell C hardness conversion numbers for nonaustenitic steels. The article lists the approximate equivalent hardness numbers for Brinell hardness numbers and Vickers hardness numbers for steel in tables. The tables are also outlined in a graphical form.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001297
EISBN: 978-1-62708-170-2
... many aspects the well-known hardness measuring techniques, such as the Vickers and Brinell hardness tests. However, in the “nanoindentation” technique, the indentations extend only to extremely shallow depths, often as low as nanometers. A hard indenter, usually an accurately ground diamond, is...
Abstract
This article focuses on the evaluation of mechanical properties of freestanding films and films adherent to their substrates. Common methods of testing freestanding films, including uniaxial tensile testing, uniaxial creep testing, biaxial testing, and beam-bending methods, are discussed. For films which are adherent to their substrates, indentation testing is used to evaluate hardness, creep, and strength.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006761
EISBN: 978-1-62708-295-2
... definite shape is pressed into the material to be tested, the load removed, the diagonals of the resulting indentation measured, and the hardness number calculated by dividing the load by the surface area of indentation. The principal difference is that the Vickers test uses a pyramid-shaped diamond...
Abstract
Mechanical testing is an evaluative tool used by the failure analyst to collect data regarding the macro- and micromechanical properties of the materials being examined. This article provides information on a few important considerations regarding mechanical testing that the failure analyst must keep in mind. These considerations include the test location and orientation, the use of raw material certifications, the certifications potentially not representing the hardware, and the determination of valid test results. The article introduces the concepts of various mechanical testing techniques and discusses the advantages and limitations of each technique when used in failure analysis. The focus is on various types of static load testing, hardness testing, and impact testing. The testing types covered include uniaxial tension testing, uniaxial compression testing, bend testing, hardness testing, macroindentation hardness, microindentation hardness, and the impact toughness test.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003241
EISBN: 978-1-62708-199-3
... pyramid ( Fig. 8 ) geometry that would produce hardness numbers nearly identical to Brinell numbers within the range of both. This decision was very wise, as it made the Vickers test very easy to adopt. Fig. 8 Schematic representation of the square-base pyramidal diamond indenter used in a Vickers...
Abstract
This article reviews the various types of mechanical testing methods, including hardness testing; tension testing; compression testing; dynamic fracture testing; fracture toughness testing; fatigue life testing; fatigue crack growth testing; and creep, stress-rupture, and stress-relaxation testing. Shear testing, torsion testing, and formability testing are also discussed. The discussion of tension testing includes information about stress-strain curves and the properties described by them.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001237
EISBN: 978-1-62708-170-2
... fracture toughness data can be determined. Hardness is defined as the resistance to penetration by an indenter, and the Knoop and Vickers measurements are the most common. A Knoop hardness number (HK) is obtained by: HK = P / A p = 14.229 P / d 2 where P is the load...
Abstract
Quantitative image analysis has expanded the capabilities of surface analysis significantly with the use of computer technology. This article provides an overview of the quantitative image analysis and optical microscopy. It describes the various steps involved in surface preparation of samples prone to abrasion damage and artifacts for quantitative image analysis.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006757
EISBN: 978-1-62708-295-2
... ” dealing with ceramic materials, as well as the various procedures previously outlined for chemical analysis and characterization of materials. The presence of distortions or plastic deformation in a component can indicate the direction of loading that was applied. The shape of indentations can also...
Abstract
Examination of a damaged component involves a chain of activities that, first and foremost, requires good observation and documentation. Following receipt and documentation, the features of damage can be recorded and their cause(s) investigated, as this article briefly describes, for typical types of damage experienced for metallic components. This article discusses the processes involved in visual or macroscopic examination of damaged material; the interpretation of fracture features, corrosion, and wear damage features; and the analysis of base material composition. It covers the processes involved in the selection of metallurgical samples, the preparation and examination of metallographic specimens in failure analysis, and the analysis and interpretation of microstructures. Examination and evaluation of polymers and ceramic materials in failure analysis are also briefly discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.9781627082952
EISBN: 978-1-62708-295-2
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.9781627081764
EISBN: 978-1-62708-176-4
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006790
EISBN: 978-1-62708-295-2
... from a worn surface. The simplest model of abrasive wear is one in which rigidly supported hard particles indent and are forced across the surface of the wear material. Depending on the properties of the abrasive and wear materials, one of several wear mechanisms ( Fig. 4 ) may occur ( Ref 7 , 10...
Abstract
Engineered components fail predominantly in four major ways: fracture, corrosion, wear, and undesirable deformation (i.e., distortion). Typical fracture mechanisms feature rapid crack growth by ductile or brittle cracking; more progressive (subcritical) forms involve crack growth by fatigue, creep, or environmentally-assisted cracking. Corrosion and wear are another form of progressive material alteration or removal that can lead to failure or obsolescence. This article primarily covers the topic of abrasive wear failures, covering the general classification of wear. It also discusses methods that may apply to any form of wear mechanism, because it is important to identify all mechanisms or combinations of wear mechanisms during failure analysis. The article concludes by presenting several examples of abrasive wear.
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.9781627081719
EISBN: 978-1-62708-171-9
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009008
EISBN: 978-1-62708-185-6
... 3 mm (0.12 in.) apart with a carbide-tipped height gage. Four gage points are indented at midheight of the cylindrical specimen with a Vickers or diamond brale hardness indenter. Fig. 3 Grids for strain measurements on upset cylinders Scribed lines or hardness indentations should...
Abstract
A cylindrical specimen compressed with friction at the die surfaces does not remain cylindrical in shape but becomes bulged or barreled. Tensile stresses associated with the bulging surface make the upset test a candidate for workability testing. This article discusses test-specimen geometry and friction conditions; strain measurements; crack detection; and material inhomogeneities, which are to be considered for performing cold upset testing. It describes test characteristics in terms of deformation, free-surface strains, and stress states for performing cylindrical compression tests. The article illustrates the fracture loci in cylindrical, tapered, and flanged upset-test specimens of aluminum alloy and type 1045 cold-finished steel.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003057
EISBN: 978-1-62708-200-6
... guidelines for microstructural analysis of ceramics. Table 6 Preparation guidelines for microstructural analysis of ceramics Preparation stage Purpose Abrasive bonding Abrasive surface Diamond abrasive size Sectioning Obtain a representative section Fixed Metal-bonded wheel Material...
Abstract
This article describes testing and characterization methods of ceramics for chemical analysis, phase analysis, microstructural analysis, macroscopic property characterization, strength and proof testing, thermophysical property testing, and nondestructive evaluation techniques. Chemical analysis is carried out by X-ray fluorescence spectrometry, atomic absorption spectrophotometry, and plasma-emission spectrophotometry. Phase analysis is done by X-ray diffraction, spectroscopic methods, thermal analysis, and quantitative analysis. Techniques used for microstructural analysis include reflected light microscopy using polarized light, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis of X-rays, and wavelength dispersive analysis of X-rays. Macroscopic property characterization involves measurement of porosity, density, and surface area. The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and glass and measurement of these properties as a function of temperature.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0006515
EISBN: 978-1-62708-200-6
... high performance HPLC high-performance liquid chromatography HPSN hot-pressed silicon nitride HR Rockwell hardness (requires a scale designation, such as HRC for Rockwell C hardness) H-SB-BL hydrogenated styrene-butadiene block copolymers HV Vickers hardness...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006649
EISBN: 978-1-62708-213-6
... releases the stresses and minimizes the carbon and oxygen content, so that the iron powder softens. To measure particle hardness, indentation hardness tests, such as the Vickers microhardness (MHV) test, can be used. Under an optical measurement system, a pyramidal-pointed diamond is impressed into the...
Abstract
This article uses metal and alloy powders as examples to briefly discuss how to perform the characterization of powders. It begins by reviewing some of the techniques involved in the sampling of powders to ensure accurate characterization. This is followed by a discussion on the important properties to characterize powders, namely the particle size, surface area, density, porosity, particle hardness, compressibility, green strength, and flowability. For characterization of powders, both individual particles and bulk powders are used to evaluate their physical and chemical properties. The article also discusses the important characteristics and compositions of powder as well as impurities that directly affect powder properties. It ends with a description of the ignition and dust-explosion characteristics of organic and metal powders.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006671
EISBN: 978-1-62708-213-6
... shows the resistance of the ceramic to catastrophic failure. A ceramic can be indented with either a Knoop or Vickers shaped diamond indenter and the indentation size measured to give a hardness value. Hardness is related to properties such as wear resistance, which is often measured as the material...
Abstract
The characterization, testing, and nondestructive evaluation of ceramics and glasses are vital to manufacturing control, property improvement, failure prevention, and quality assurance. This article provides a broad overview of characterization methods and their relationship to property control, both in the production and use of ceramics and glasses. Important aspects covered include the means for characterizing ceramics and glasses, the corresponding rationale behind them, and relationship of chemistry, phases, and microconstituents to engineering properties. The article also describes the effects that the structure of raw ceramic materials and green products and processing parameters have on the ultimate structure and properties of the processed piece. The effects that trace chemistry and processing parameters have on glass properties are discussed. The article describes mechanical tests and failure analysis techniques used for ceramics.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001243
EISBN: 978-1-62708-170-2
... distorts the base metal and is influenced by it, which usually results in low hardness readings. The most reliable and most widely accepted hardness values are those obtained with the Vickers 136 diamond pyramid indenter or the Knoop indenter. With these, the hardness test must be made on a carefully...
Abstract
Hard chromium plating is produced by electrodeposition from a solution containing chromic acid and a catalytic anion in proper proportion. This article presents the major uses of hard chromium plating, and focuses on the selection factors, plating solutions, solution and process control, equipment, surface preparation, and crack patterns and other characteristics of hard chromium plating. It offers recommendations for the design and use of plating racks, describes the problems encountered in hard chromium plating, and their corrective procedures. The article provides information on the removal of chromium plate from coated metals, recovery and disposal of wastes, and stopoff media for selective plating.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003063
EISBN: 978-1-62708-200-6
Abstract
Ceramic-matrix composites (CMCs) are being developed for a number of high-temperature and high-performance applications in industrial, aerospace, and energy conservation sectors. This article focuses on processing, fabrication, testing, and characterization methods of CMCs, namely, discontinuously reinforced composites and continuous-fiber-reinforced composites. Processing methods include cold pressing, sintering, hot pressing, reaction bonding, melt infiltration, directed metal oxidation, sol-gel and polymer pyrolysis, self-propagating high-temperature synthesis and joining. A table summarizes the properties of various ceramic reinforcements and industrial applications of these composites.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003061
EISBN: 978-1-62708-200-6
... either metal or plastic/fiberglass composite strips. Then diamond grinding and finishing machines were designed and built to achieve the required surface finish. These machines are also capable of maintaining the extreme flatness and tolerance over the whole width demanded by the high-speed papermaking...
Abstract
Structural applications for advanced ceramics include mineral processing equipment, machine tools, wear components, heat exchangers, automotive products, aerospace components, and medical products. This article begins with an overview of the wear-resistant applications and the parameters affecting wear of ceramics, namely, hardness, thermal conductivity, fracture toughness, and corrosion resistance. The next part of the article addresses temperature-resistant applications of advanced ceramics. Specific applications of ceramic materials addressed include cutting tools, pump and valve components, rolling elements and bearings, paper and wire manufacturing, biomedical implants, heat exchangers, adiabatic diesel engines, advanced gas turbines, and aerospace applications.