Skip Nav Destination
Close Modal
Search Results for
UNS S31603
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 57 Search Results for
UNS S31603
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2003
Fig. 11 Comparison of crevice corrosion propagation currents for UNS S31603 stainless steel remote crevice assemblies after normalizing initiation times. Source: Ref 2
More
Image
Published: 31 December 2017
Fig. 14 Cumulative mean penetration depth (MPD) as a function of time for several austenitic (UNS S30400 and UNS S31603) and duplex grades (UNS S31803 and UNS S32760) in 3.5% NaCl solution at 23 °C (70 °F). Source: Ref 108
More
Image
Published: 31 December 2017
Fig. 11 Relative mass losses of 1Cr13 (UNS S41000; PREN = 14), 0Cr14Ni5Mo (PREN = 18), type 316L (UNS S31603; PREN = 24), and SS-CD-4MCu (UNS J93370; PREN = 32). Data from Ref 81
More
Image
Published: 31 December 2017
Fig. 8 Relationship between the kinetic energy of the particles and the erosion mass loss for AISI 316L (UNS S31603) and LDX 2101 (UNS S32101) stainless steels and various types of erodents and for certain erodents with a different size in 10 wt% slurries. Source: Ref 69
More
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006372
EISBN: 978-1-62708-192-4
... 9 … UNS 30300 (type 303) austenitic Annealed 620 90 240 35 50 … UNS 30400 (type 304) austenitic Plate Annealed 515 75 205 30 40 92 HRB max UNS 31600 (type 316) austenitic Plate Annealed 515 75 205 30 40 95 HRB max UNS S31603 (type 316L) austenitic...
Abstract
Stainless steels are characterized as having relatively poor wear resistance and tribological properties, but they are often required for a particular application because of their corrosion resistance. This article describes the classification of stainless steels and wear. Stainless steels have been classified by microstructure and are categorized as austenitic, martensitic, ferritic, or duplex. The main categories of wear are related to abrasion, erosion, adhesive wear, and surface fatigue. The article presents a list that proposes the alloy family that could be the optimal selection for a particular wear mode. The corrosion modes include dry sliding, tribocorrosion, erosion, erosion-corrosion, cavitation, dry erosion, erosion-oxidation, galling and fretting.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004203
EISBN: 978-1-62708-184-9
... to resist corrosion from new processes. Equipment involved in product contact has been constructed largely from austenitic stainless steel 304L (UNS S30403) and 316L (UNS S31603). The satisfactory performance of these materials in most applications, combined with good material availability at acceptable...
Abstract
This article discusses the corrosion characteristics of superaustenitic stainless and duplex stainless steels, which are used in pharmaceutical industry. It describes passivation treatments and the electropolishing of stainless steels. The article informs that electropolishing is not a passivation treatment, although the proper execution of the process will result in a passive surface. The article concludes with a discussion on roughing, which is a phenomenon of particular interest to the pharmaceutical industry.
Book Chapter
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005687
EISBN: 978-1-62708-198-6
... Fe-17Cr-14Ni-2.5Mo AMS 5507, AMS 5584, AMS 5653 316L, UNS S31603 Fixation devices; hips; elbow; spinal; knees Clips; pacemakers; heart valves; vascular embolization devices; filters; stents; defibrillators; grafts Fe-18Cr-14Ni-2.5Mo ASTM F138, ASTM F139, ASTM F1350, ISO 5832-1 (Composition D...
Abstract
This article tabulates materials that are known to have been used in orthopaedic and/or cardiovascular medical devices. The materials are grouped as metals, ceramics and glasses, and synthetic polymers in order. These tables were compiled from the Medical Materials Database which is a product of ASM International and Granta Design available by license online and as an in-house version. The material usage was gleaned from over 24,000 U.S. Food and Drug Administration (USFDA), Center for Devices and Radiological Health, Premarket notifications (510k), and USFDA Premarket Approvals, and other device records that are a part of this database. The database includes other material categories as well. The usage of materials in predicate devices is an efficient tool in the material selection process aiming for regulatory approval.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003662
EISBN: 978-1-62708-182-5
... the application of an epoxy coating to assess the crevice corrosion behavior of weld metal and adjacent heat-affected zones on cruciform-shaped specimens in seawater. Reference 37 discusses the repeatability aspects of the testing performed on UNS S31603, S20910, and N08367. Elsewhere, a paint marking pen...
Abstract
Crevice corrosion is a form of localized corrosion that affects many alloys that normally exhibit passive behavior. This article discusses the frequently used crevice corrosion testing and evaluation procedures. These procedures include specific crevice corrosion tests, multiple-crevice assembly tests, cylindrical materials and products evaluation, component testing, electrochemical tests, and mathematical modeling.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003664
EISBN: 978-1-62708-182-5
..., but the vendor, having few orders for this alloy, substituted Type 316L stainless steel (UNS S31603) valves and sent certifications that purposely omitted the molybdenum analysis. Normally, this would have been a good substitution for improved corrosion resistance at a bargain price, but these valves were...
Abstract
Most alloys are susceptible to intergranular corrosion, also known as intergranular attack (IGA), when exposed to specific environments. This article reviews the theory and application of acceptance tests for detecting the susceptibility of stainless steels and nickel-base alloys to IGA. It describes the most serious forms of structure-dependent corrosion, such as stress-corrosion cracking and exfoliation, in aluminum alloys including strain-Hardened 5xxx (Al-Mg) alloys and heat treated high-strength alloys. The article concludes with information on the evaluation tests for other alloys such as magnesium alloys and zinc die casting alloys.
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003817
EISBN: 978-1-62708-183-2
..., relative to type 316L stainless steel (UNS S31603). Critical pitting temperatures and critical crevice temperatures of selected alloys in Green Death and 6% ferric chloride Table 8 Critical pitting temperatures and critical crevice temperatures of selected alloys in Green Death and 6% ferric...
Abstract
This article addresses the cobalt and cobalt-base alloys most suited for aqueous environments and those suited for high temperatures. The performance of cobalt alloys in aqueous environments encountered in commercial applications is discussed. The article provides information on the environmental cracking resistance of the cobalt alloys. Three welding processes that are used for hardfacing with the high-carbon Co-Cr-W alloys, namely, oxyacetylene, gas tungsten arc, and plasma-transferred arc are also discussed. The article examines the effects of various modes of high-temperature corrosion. It describes the applications and fabrication of cobalt alloys for high-temperature service.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004153
EISBN: 978-1-62708-184-9
... chemical compositions of the various alloys considered for use in FGD systems are shown in Table 1 . Included in generally increasing corrosion-resistance order are the austenitic stainless steels, types 316L (UNS S31603) and 317L (S31703), and the 4% molybdenum stainless steels, types 317LM (S31725...
Abstract
This article begins with a discussion on the components and importance of flue gas desulfurization (FGD) technology used in power plant for pollution control. It further discusses the corrosion problems encountered in different operating zones of FGD system and the major forms of corrosive attack encountered in those zones, including crevice corrosion, pitting corrosion, and acid attack. The article concludes with information on the materials selection and design features for minimizing the possibility of corrosion.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004130
EISBN: 978-1-62708-184-9
... investigators ( Ref 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 ) have documented the tendency for biofilms to cause a noble shift, or an ennoblement, in open-circuit potential of passive alloys exposed in marine environments. Alloys tested include, but are not limited to: UNS S30400, S30403, S31600, S31603...
Abstract
This article focuses on microbiologically influenced corrosion (MIC) of military assets. It discusses the mechanisms of MIC in hydrocarbon fuels and atmospheric, immersion, and buried environments with specific examples. The article describes the behavior of metals and alloys, namely, copper alloy, nickel alloy, titanium and titanium alloys, aluminum alloys, stainless steels, and carbon steel in immersion environments.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001410
EISBN: 978-1-62708-173-3
... 2.0 1.00 16.0–18.0 10.0–14.0 0.045 0.03 2.0–3.0 Mo 316F S31620 0.08 2.0 1.00 16.0–18.0 10.0–14.0 0.20 0.10 min 1.75–2.5 Mo 316H S31609 0.04–0.10 2.0 1.00 16.0–18.0 10.0–14.0 0.045 0.03 2.0–3.0 Mo 316L S31603 0.03 2.0 1.00 16.0–18.0 10.0–14.0 0.045 0.03 2.0–3.0...
Abstract
Austenitic stainless steels exhibit a single-phase, face-centered cubic structure that is maintained over a wide range of temperatures. This article reviews the compositions of standard and nonstandard austenitic stainless steels. It summarizes the important aspects of solidification behavior and microstructural evolution that dictate weld-metal ferrite content and morphology. The article describes weld defect formation, namely, solidification cracking, heat-affected zone liquation cracking, weld-metal liquation cracking, copper contamination cracking, ductility dip cracking, and weld porosity. It discusses four general types of corrosive attack: intergranular attack, stress-corrosion cracking, pitting and crevice corrosion, and microbiologically influenced corrosion. The article concludes with information on weld thermal treatments such as preheat and interpass heat treatments and postweld heat treatment.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006993
EISBN: 978-1-62708-439-0
...-9.0Mo-3.65Nb” AMS 7006, “Nickel Alloy, Corrosion- and Heat-Resistant, Powder for Additive Manufacturing, 52.5Ni-19Cr-3.0Mo-5.1Cb(Nb)-0.90Ti-0.50Al-18Fe” Stainless steel alloys ASTM F3184, “Standard Specification for Additive Manufacturing Stainless Steel Alloy (UNS S31603) with Powder-Bed Fusion...
Abstract
This article presents the history of standardization in additive manufacturing (AM). It explains the need and structure for standardization in AM, including the application of AM standards by the industry sector. It also presents the primary purposes of these standards to create AM qualification and certification frameworks.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003702
EISBN: 978-1-62708-182-5
.... In some cases, every component of an assembly must be tested to avoid excessive corrosion and/or premature failure. For example, an additional quality check of a vessel fabricated from AISI type 316L stainless steel (UNS S31603) for hot acetic acid service might be to test every plate, flange, nozzle...
Abstract
This article outlines the processes by which materials are selected to prevent or control localized corrosion, galvanic corrosion, and intergranular corrosion. It reviews the operating conditions and the design of candidate materials for material selection. The article discusses various corrosion-resistant materials, including ferrous and nonferrous metals and alloys, thermoplastics, reinforced thermosetting plastics, nonmetallic linings, glass, carbon and graphite, and catalyzed resin coatings. It examines an unusual form of intergranular corrosion known as exfoliation, which occurs in aluminum-copper alloys. The article also describes three types of erosion-corrosion: liquid erosion-corrosion, cavitation, and fretting. It concludes with information on the various factors to be considered for material selection, including minimum cost or economic design, minimum corrosion, minimum investment, and minimum maintenance.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006390
EISBN: 978-1-62708-192-4
... of cobalt-base alloys<xref rid="n0639000" ref-type="table-fn">(a)</xref> Table 1 Nominal compositions and typical applications of cobalt-base alloys (a) Alloy No. UNS No. Nominal composition, wt% Applications Co Cr W Mo C Fe Ni Si Mn Others Group 1: Wear-resistant alloys...
Abstract
This article focuses on the tribological behavior of group 1, 2, and 3 cobalt-base alloys, namely, carbide-type wear-resistant alloys and laves-type wear-resistant alloys. The behavior includes hardness, yield strength and ductility, and fracture toughness. The article contains a table that lists the nominal compositions and typical applications of cobalt-base alloys. It discusses the properties and relative performance of specific alloys when subjected to the more common types of wear. These include abrasive wear, high-temperature sliding wear, rolling-contact fatigue wear, and erosive wear.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004104
EISBN: 978-1-62708-184-9
... grades (300 series) of stainless steel typically have the best performance. Type 316L (UNS S31603) alloy has provided the best overall performance in most wastewater treatment plant exposures. Pitting of stainless steel may occur in stagnant or slow-moving water. Oxidizing metal salts, such as ferric...
Abstract
This article provides information on predesign surveys and the various testing procedures associated with wastewater treatment plants. These include soil testing, atmospheric testing, and hydrogen sulfide testing. The primary parameters that influence the production of sulfides within the piping system that transports the wastewater to the treatment facility are discussed. The article describes the corrosion performance of various materials in the soil, fluid, and atmospheric exposures. These include concrete, steel, ductile iron, aluminum, copper, brass, stainless steel, and coatings used for wastewater facilities.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004177
EISBN: 978-1-62708-184-9
... to 150 °C (120 to 300 °F) The presence of an electrolyte (water) Alloys The stainless steels that are commonly affected by ESCC in the chemical process industries are the 300 series stainless steels, including type 304 (UNS S30400 and S30403), type 316 (UNS S31600 and S31603), type 317L (UNS...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006989
EISBN: 978-1-62708-439-0
... S31603) with Powder-Bed Fusion” F 3187-16, “Standard Guide for Directed-Energy Deposition of Metals” F 3301-18a, “Standard for Additive Manufacturing—Postprocessing Methods—Standard Specification for Thermal Postprocessing Metal Parts Made via Powder-Bed Fusion” F 3303-18, “Standard for Additive...
Abstract
The aviation industry has been driving the use of additive manufacturing (AM), moving from one-off demonstrator or pathfinder components toward higher-volume serial production applications. This article presents an introduction to AM in aviation, explaining how aviation requirements apply to AM. It also presents advancements, standards, and future expectations of aviation.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002180
EISBN: 978-1-62708-188-7
... 12.00–15.00 … … … S31000 310 0.25 2.00 1.50 0.045 0.030 24.00–26.00 19.00–22.00 … … … S31008 310S 0.08 2.00 1.50 0.045 0.030 24.00–26.00 19.00–22.00 … … … S31600 316 0.08 2.00 1.00 0.045 0.030 16.00–18.00 10.00–14.00 2.00–3.00 … … S31603 316L 0.030 2.00...
Abstract
The machinability of stainless steels varies from low to very high, depending on the final choice of the alloy. This article discusses general material and machining characteristics of stainless steel. It briefly describes the classes of stainless steel, such as ferritic, martensitic, austenitic, duplex, and precipitation-hardenable alloys. The article examines the role of additives, such as sulfur, selenium, tellurium, lead, bismuth, and certain oxides, in improving machining performance. It provides ways to minimize difficulties involved in the traditional machining of stainless steels. The article describes turning, drilling, tapping, milling, broaching, reaming, and grinding operations on stainless steel. It concludes with information on some of the nontraditional machining techniques, including abrasive jet machining, abrasive waterjet machining electrochemical machining, electron beam machining, and plasma arc machining.
1