Skip Nav Destination
Close Modal
Search Results for
UNS R56406
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-2 of 2 Search Results for
UNS R56406
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005674
EISBN: 978-1-62708-198-6
...-3Al-2.5V Ti-3Al-2.5V (alpha/beta) R56320 ASTM F2146 … Ti-5Al-2.5Fe Tikrutan (alpha/beta) Unassigned … ISO 5832-10 Ti-6Al-4V Ti-6Al-4V (alpha/beta) R56400 ASTM F1472 ISO 5832-3 Ti-6Al-4V, cast Ti-6Al-4V (alpha/beta) R56406 ASTM F1108 … Ti-6Al-4V ELI Ti-6Al-4V ELI (alpha...
Abstract
Titanium and its alloys have been used extensively in a wide variety of implant applications, such as artificial heart pumps, pacemaker cases, heart valve parts, and load-bearing bone or hip joint replacements or bone splints. This article discusses the properties of titanium and its alloys and presents a list of titanium-base biomaterials. Titanium components are produced in wrought, cast, and powder metallurgy (PM) form. The article describes forging, casting, and heat treating of titanium alloys for producing titanium components. Typical mechanical properties of titanium biomedical implant alloys are listed in a tabular form. The article presents an overview of the surface-modification methods for titanium and its alloys implants. It concludes with a section on biocompatibility and in vivo corrosion of titanium alloys.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005683
EISBN: 978-1-62708-198-6
Abstract
The interaction of an implant with the human body environment may result in degradation of the implant, called corrosion. This article discusses the corrosion testing of metallic implants and implant materials. The corrosion environments for medical implants are the extracellular human body fluids, very complex solutions containing electrolytes and nonelectrolytes, inorganic and organic constituents, and gases. The article describes the fundamentals of electrochemical corrosion testing and provides a brief discussion on various types of corrosion tests. It illustrates corrosion current density determination by Tafel extrapolation, potentiodynamic measurement of the polarization resistance, electrochemical impedance measurement, and potentiostatic deaeration. Tests combining corrosion and mechanical forces, such as fretting corrosion tests, environment-assisted cracking tests, and ion-leaching tests are also discussed.