Skip Nav Destination
Close Modal
By
ASM Committee on Cold-Finished Bars, K.M. Shupe, Richard B. Smith, Steve Slavonic, B.F. Leighton ...
Search Results for
UNS G86200
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-15 of 15 Search Results for
UNS G86200
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 December 2004
Fig. 6 Primary austenite grain structure of a fine-grained UNS G86200 steel thermally etched 2 h at 925 °C (1700 °F). 100×. Courtesy of D.L. Albright. Source: Ref 3
More
Image
in Prevention of Machining-Related Failures
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 5 Fluorescent dye penetrant indication of fissures in a carburized UNS G86200 steel worm gear after grinding, revealed under ultraviolet light. Source: Ref 8
More
Image
Published: 31 December 2017
Fig. 3 (a) Wear mode and (b) wear mechanism map of AISI 303 (UNS S30300) stainless steel sliding against AISI 8620 (UNS G86200) low-alloy steel pin. Source: Ref 9
More
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006826
EISBN: 978-1-62708-329-4
... altered or damaged, then the manufacturing and materials engineers must monitor the surface characteristics and the affected mechanical properties of the material. As an example, aggressive grinding parameters resulted in overheating or burning the surface and subsurface of a carburized UNS G86200...
Abstract
The first part of this article focuses on two major forms of machining-related failures, namely machining workpiece (in-process) failures and machined part (in-service) failures. Discussion centers on machining conditions and metallurgical factors contributing to (in-process) workpiece failures, and undesired surface layers and metallurgical factors contributing to (in-service) machined part failures. The second part of the article discusses the effects of microstructure on machining failures and their preventive measures.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003725
EISBN: 978-1-62708-177-1
... of a solidified structure ( Ref 1 ). Fig. 6 Primary austenite grain structure of a fine-grained UNS G86200 steel thermally etched 2 h at 925 °C (1700 °F). 100×. Courtesy of D.L. Albright. Source: Ref 3 More recently, electron backscatter diffraction (EBSD) was used to evaluate the effect...
Abstract
The ferrous metals are the most significant class of commercial alloys. This article describes the solidification structures of plain carbon steel, low-alloy steel, high-alloy steel, and cast iron, with illustrations. The formation of nonmetallic inclusions in the liquid before and during solidification is also discussed.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002179
EISBN: 978-1-62708-188-7
..., in the as-rolled or annealed condition, often behave more like their plain carbon counterparts than do the more highly alloyed types ( Ref 13 ). For example, UNS G40230 may have the same effect on tool life as UNS G10220 and G10260, while the more highly alloyed G86200 has a greater effect on tool wear (similar...
Abstract
This article describes the influence of steel chemical compositions and microstructure on machining processes. It discusses the various microstructural phases of standard carbon and alloy steels, which influence machinability. The article reviews the expected response of several traditional machining operations, such as turning, drilling, milling, shaping, thread cutting, and grinding, to the microstructure of standard steel grades. It also explains the technologies in non-traditional machining processes, such as abrasive waterjet cutting, electrical chemical grinding, and laser drilling.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006372
EISBN: 978-1-62708-192-4
... and there will be less oxide scale thickness to provide a solid lubricant or an oxide glaze. This is reflected in the different conditions in which transitions occur. Fig. 3 (a) Wear mode and (b) wear mechanism map of AISI 303 (UNS S30300) stainless steel sliding against AISI 8620 (UNS G86200) low-alloy steel pin...
Abstract
Stainless steels are characterized as having relatively poor wear resistance and tribological properties, but they are often required for a particular application because of their corrosion resistance. This article describes the classification of stainless steels and wear. Stainless steels have been classified by microstructure and are categorized as austenitic, martensitic, ferritic, or duplex. The main categories of wear are related to abrasion, erosion, adhesive wear, and surface fatigue. The article presents a list that proposes the alloy family that could be the optimal selection for a particular wear mode. The corrosion modes include dry sliding, tribocorrosion, erosion, erosion-corrosion, cavitation, dry erosion, erosion-oxidation, galling and fretting.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003763
EISBN: 978-1-62708-177-1
..., G52986, G43400, and G86200. The letter “G” designates standard carbon and alloy steels. Following the AISI/SAE practice, the first two digits describe the class of steel, and the next two digits describe the nominal carbon content. The UNS 41 xxx -series of low-alloy steels are chromium-molybdenum steels...
Abstract
This article describes the microstructure and metallographic practices used for medium- to high-carbon steels as well as for low-alloy steels. It explains the microstructural constituents of plain carbon and low-alloy steels, including ferrite, pearlite, and cementite. The article provides information on how to reveal the various constituents using proven metallographic procedures for both macrostructural and microstructural examination. Emphasis is placed on the specimen preparation procedures such as sectioning, mounting, grinding, and polishing. The article illustrates the use of proven etching techniques for plain carbon and low-alloy steels.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003092
EISBN: 978-1-62708-199-3
... ranges, and product analysis tolerances of carbon and alloy steels. The major designation systems discussed include the Society of Automotive Engineers (SAE)-American Iron and Steel Institute (AISI) designations, Unified Numbering System (UNS) designations, American Society for Testing and Materials...
Abstract
This article provides an overview of the different classification and designation systems of wrought carbon steel and alloy steel product forms with total alloying element contents not exceeding 5″. It lists the quality descriptors, chemical compositions, cast or heat composition ranges, and product analysis tolerances of carbon and alloy steels. The major designation systems discussed include the Society of Automotive Engineers (SAE)-American Iron and Steel Institute (AISI) designations, Unified Numbering System (UNS) designations, American Society for Testing and Materials (ASTM) designations, Aerospace Material Specification (AMS), and other international designations and specifications.
Book Chapter
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005954
EISBN: 978-1-62708-168-9
... 0.035 0.040 0.15–0.35 0.40–0.70 0.40–0.60 0.15–0.25 … 8617 G86170 0.15–0.20 0.70–0.90 0.035 0.040 0.15–0.35 0.40–0.70 0.40–0.60 0.15–0.25 … 8620 G86200 0.18–0.23 0.70–0.90 0.035 0.040 0.15–0.35 0.40–0.70 0.40–0.60 0.15–0.25 … 8622 G86220 0.20–0.25 0.70–0.90 0.035...
Abstract
This article summarizes some of the effects of the major alloying elements in low-alloy steels and the heat treating for some common types of low-alloy steels. Coverage includes common alloys of the following low-alloy steel types: low-alloy manganese steels, low-alloy molybdenum steels, low-alloy chromium-molybdenum steels, low-alloy nickel-chromium-molybdenum steels, low-alloy nickel-molybdenum steels, low-alloy chromium steels, low-alloy chromium-vanadium steels, and low-alloy silicon-manganese steels. The article reviews heat treating parameters and processing considerations for each category of steel, including spherodizing, normalizing, annealing, hardening, and tempering.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001009
EISBN: 978-1-62708-161-0
Abstract
This article addresses classifications and designations for carbon steels and low-alloy steels, particularly high-strength low-alloy (HSLA) steels, based on chemical composition, manufacturing methods, finishing method, product form, deoxidation practice, microstructure, required strength level, heat treatment and quality descriptors. It describes the effects of alloying elements on the properties and characteristics of steels. The article provides extensive tabular data pertaining to domestic and international designations of steels.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001013
EISBN: 978-1-62708-161-0
...–0.18 0.60–0.90 0.15–0.30 0.35–0.60 0.40–0.70 0.15–0.25 8617 G86170 0.15–0.21 0.60–0.90 0.15–0.30 0.35–0.60 0.40–0.70 0.15–0.25 8620 G86200 0.17–0.23 0.60–0.90 0.15–0.30 0.35–0.60 0.40–0.70 0.15–0.25 8622 G86220 0.19–0.25 0.60–0.90 0.15–0.30 0.35–0.60 0.40–0.70 0.15...
Abstract
The production and use of steel plate is aided by a system of standard designations and associated specifications defining composition, property, and performance ranges. This article contains an extensive amount of information on the designations and grades of plate products and how they are made. Although most steel plate is used in the hot-finished condition, some applications require one or more heat treating steps to mitigate imperfections and/or improve relevant qualities. The article discusses these interconnected factors as well as their impact on mechanical properties and critical fabrication issues, including formability, machinability, and weldability.
Book Chapter
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001015
EISBN: 978-1-62708-161-0
Abstract
Cold-finished steel bars are carbon and alloy steel bar products (round, square, hexagonal, flat, or special shapes) that are produced by cold finishing previous hot-wrought bars. by means of cold drawing, cold forming, turning, grinding, or polishing (singly or in combination) to yield straight lengths or coils that are uniform throughout their length. Cold-finished bars fall into five classifications: cold-drawn bars; turned and polished bars; cold-drawn, ground, and polished bars; turned, ground, and polished bars; cold-drawn, turned, ground, and polished bars. Different size tolerances are applicable to cold-finished products, depending on shape, carbon content, and heat treatment. When used to identify cold-finished steel bars, the various quality descriptors are indicative of many characteristics, such as degree of internal soundness, relative uniformity of chemical composition, and relative freedom from detrimental surface imperfections. Cold drawing significantly increases machinability, tensile and yield strengths of steel bars. Two special die-drawing processes have been developed to give improved properties over those offered by standard drawing practices. These processes are cold drawing using heavier-than-normal drafts, followed by stress relieving; and drawing at elevated temperatures.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002461
EISBN: 978-1-62708-194-8
... … 0.80–1.10 … 8615 G86150 0.13–0.18 0.70–0.90 0.035 0.040 0.15–0.35 0.40–0.70 0.40–0.60 0.15–0.25 8617 G86170 0.15–0.20 0.70–0.90 0.035 0.040 0.15–0.35 0.40–0.70 0.40–0.60 0.15–0.25 8620 G86200 0.18–0.23 0.70–0.90 0.035 0.040 0.15–0.35 0.40–0.70 0.40–0.60 0.15–0.25...
Abstract
The properties of irons and steels are linked to the chemical composition, processing path, and resulting microstructure of the material. Processing is a means to develop and control microstructure by hot rolling, quenching, and so forth. This article describes the role of these factors in both theoretical and practical terms, with particular focus on the role of microstructure in various irons. These include bainite, pearlite, ferfite, martensite, austenite, ferrite-pearlite, ferrite-cementite, ferrite-martensite, graphite, and cementite. The article discusses the evolution of microstructural change in rail steels, cast iron, and steel sheet. It contains tables that list the mechanical properties and compositions of selected steels. The article also discusses the basis of material selection of irons and steels.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.9781627083294
EISBN: 978-1-62708-329-4