Skip Nav Destination
Close Modal
By
K. Harris, G.L. Erickson, R.E. Schwer
By
Henry L. Bernstein, Ronald L. McAlpin
By
Daniel J. Benac, V.P. Swaminathan, Ph.D.
By
Joseph R. Stephens
By
Gordon R. Holcomb
By
Mitchell R. Dorfman, D. Sporer, P. Meyer
By
David A. Shifler, Robert B. Pond, Jr.
By
Scott Wilson
By
Robert L. Amaro, Stephen D. Antolovich, Ashok Saxena
By
J.J. deBarbadillo, J.J. Fischer
Search Results for
Turbine blade superalloy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 210
Search Results for Turbine blade superalloy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Fracture surfaces of a nickel-base superalloy turbine blade. (a) Secondary ...
Available to PurchasePublished: 15 January 2021
Fig. 11 Fracture surfaces of a nickel-base superalloy turbine blade. (a) Secondary electron image of interdendritic stress-rupture fracture at the trailing edge (TE) of single-crystal turbine blade casting showing creep voids on the fracture surface. (b) Scanning electron microscopy
More
Image
Grain structure in a directionally solidified superalloy turbine blade simu...
Available to Purchase
in Formation of Microstructures, Grain Textures, and Defects during Solidification
> Metals Process Simulation
Published: 01 November 2010
Fig. 2 Grain structure in a directionally solidified superalloy turbine blade simulated with the cellular automaton method. The <100> pole figures are displayed for various cross sections perpendicular to the main blade axis. Source: Ref 26
More
Image
The evolution of the processing of nickel-base superalloy turbine blades. (...
Available to Purchase
in Polycrystalline Cast Superalloys
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 3 The evolution of the processing of nickel-base superalloy turbine blades. (a) From left, equiaxed, directionally solidified, and single-crystal blades. (b) An exposed view of the internal cooling passages of an aircraft turbine blade. Source: Ref 5
More
Book Chapter
Directionally Solidified and Single-Crystal Superalloys
Available to PurchaseSeries: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001051
EISBN: 978-1-62708-161-0
... superalloys aircraft turbine blades directional solidification casting THE PRIMARY GOALS in the continuing development of the aircraft gas turbine are increased operating temperatures and improved efficiencies. A more efficient turbine is required to achieve lower fuel consumption. Higher turbine inlet...
Abstract
Directionally solidified (DS) and single-crystal (SX) superalloys and process technology are contributing to significant advances in turbine engine efficiency and durability. These gains are expected to arise from the development of higher creep strength and improved oxidation-resistant SX alloy compositions as well as from the development of SX casting and fabrication technology to utilize advanced transpiration-cooling schemes. This article provides a detailed discussion on the chemistry and castability of first- and second-generation DS and SX superalloys. It summarizes the chemistry modifications applied to MAR-M 247 to develop CMSX-2 with respect to function and objectives. The article also lists the nominal compositions of first- and second-generation DS and SX superalloys.
Book Chapter
Corrosion of Industrial Gas Turbines
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004158
EISBN: 978-1-62708-184-9
... International Corrosion in the Combustor and Turbine Sections The materials commonly found in the combustor and turbine sections are superalloys and stainless steels. Nickel-base superalloys are typically used for combustor liners, transitions, blades, vanes, shrouds, and sometimes disks because...
Abstract
The corrosion issues in the compressor, combustor and turbine sections of industrial gas turbines used in steam production generally depend on the quality of the fuel, air, and water used in the engine than on the specific industrial application. This article focuses on the forms of corrosion and their preventive measures in the compressor, combustor and turbine sections of a steam turbine. The compressor section mainly suffers from aqueous corrosion; while in case of the combustor and turbine sections, which are made of nickel-base superalloys, high-temperature environmental attack in the form of high-temperature oxidation and hot corrosion are predominant. The effect of high-temperature oxidation and hot corrosion on the mechanical properties of superalloys is also discussed.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006824
EISBN: 978-1-62708-329-4
... of the turbine. From other failures in the fleet, the disc was known to be prone to cracking in a similar location, resulting in release of turbine blades into the turbine flow path. The disc was manufactured from Discaloy (Westinghouse Electric Corporation), a wrought, iron-base superalloy (26% Ni, 13.5% Cr...
Abstract
This article focuses on common failures of the components associated with the flow path of industrial gas turbines. Examples of steam turbine blade failures are also discussed, because these components share some similarities with gas turbine blading. Some of the analytical methods used in the laboratory portion of the failure investigation are mentioned in the failure examples. The topics covered are creep, localized overheating, thermal-mechanical fatigue, high-cycle fatigue, fretting wear, erosive wear, high-temperature oxidation, hot corrosion, liquid metal embrittlement, and manufacturing and repair deficiencies.
Book Chapter
Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... versus the time. More information is presented later in this article. Fig. 4 Examples of thermal-mechanical fatigue cracking and oxidation in a first-stage turbine blade Metallurgical Instabilities Metallurgical instabilities form when superalloy turbine blades and steel tubes or piping...
Abstract
This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing. The article discusses metallurgical instabilities of steel-based alloys and nickel-base superalloys. It provides information on several life assessment methods, namely, the life fraction rule, parameter-based assessments, the thermal-mechanical fatigue, coating evaluations, hardness testing, microstructural evaluations, the creep cavitation damage assessment, the oxide-scale-based life prediction, and high-temperature crack growth methods.
Book Chapter
Nickel-Base Alloys: Atlas of Fractographs
Available to PurchaseBook: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000616
EISBN: 978-1-62708-181-8
... Abstract This article is an atlas of fractographs that covers nickel-base superalloys. The fractographs display the following: hydrogen-embrittlement fracture; segment of a fractured second-stage gas-turbine wheel; gas-producer turbine rotor cast; dendritic stress-rupture fracture surface...
Abstract
This article is an atlas of fractographs that covers nickel-base superalloys. The fractographs display the following: hydrogen-embrittlement fracture; segment of a fractured second-stage gas-turbine wheel; gas-producer turbine rotor cast; dendritic stress-rupture fracture surface; fatigue and creep fractures; simultaneous metallographic-fractographic evaluation; and effect of thermal cycling on fatigue fracture.
Image
Location and structure of tungsten fibers in fiber-reinforced superalloy co...
Available to Purchase
in Refractory Metals and Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 36 Location and structure of tungsten fibers in fiber-reinforced superalloy composite turbine blades for rocket engine turbopumps. Courtesy NASA Lewis Research Center
More
Image
Stage I fatigue crack initiation is shown in a cast nickel-base superalloy ...
Available to PurchasePublished: 01 June 2024
Fig. 14 Stage I fatigue crack initiation is shown in a cast nickel-base superalloy turbine blade. Arrows in (a) indicate the crack-propagation direction away from the faceted origin site in (b). Source: Ref 54
More
Book Chapter
Strategic Materials Availability and Supply
Available to PurchaseSeries: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001052
EISBN: 978-1-62708-161-0
.... Ingestion of seawater spray into helicopter engines used in the Vietnam war wreaked havoc in low-chromium turbine blades, leading to a reevaluation of the use of chromium in superalloys. The trend toward the increased use of refractory metals is shown in Fig. 2 and Table 5 . It is apparent...
Abstract
This article reviews some of the trends in superalloy development as they relate to U.S. strategic materials availability and the aerospace industry. It discusses the supply sources and availability of strategic materials and summarizes the status of U.S. resources and reserves. The article presents a list of several superalloys that have been used in gas turbine engines or that are emerging as replacements because of the promise of increased operating temperatures and higher efficiencies for the aircraft of the future. It concentrates on the objectives, results, and methodology of the NASA Conservation of Strategic Aerospace Materials (COSAM) program.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001050
EISBN: 978-1-62708-161-0
... of nickel-base superalloy turbine blades. (a) From left, equiaxed, directionally solidified, and single-crystal blades. (b) An exposed view of the internal cooling passages of an aircraft turbine blade. Source: Ref 5 The logical progression to grain-boundary reduction is the total elimination...
Abstract
The initial cast superalloy developments in the United States centered on cobalt-base materials. Nickel-base and nickel-iron-base superalloys owe their high-temperature strength potential to their gamma prime content. For polycrystalline superalloy components, high-temperature strength is affected by the condition of the grain boundaries and, in particular, the grain-boundary carbide morphology and distribution. Vacuum induction melting offers more control over alloy composition and homogeneity than all other vacuum melting processes. The primary purification reaction occurring in the process is the removal of melt contained oxygen by means of a reaction with carbon to form carbon monoxide. A number of casting processes can provide near-net shape superalloy cast parts, but essentially all components are produced by investment casting. The solidification of investment cast superalloy components is precisely controlled so that the microstructure, which ultimately determines mechanical properties, remains consistent. Heat treating cast superalloys involves homogenization and solution heat treatments or aging heat treatments.
Book Chapter
Corrosion in Supercritical Water—Ultrasupercritical Environments for Power Production
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004133
EISBN: 978-1-62708-184-9
... turbine blades ( Ref 15 ). Although superalloys have been used extensively in gas turbines, they have not been evaluated with experience in steam turbines. An important consideration for the selection of these candidate superalloys was to have thermal expansion coefficients close to that of the 12Cr rotor...
Abstract
This article describes the control of water chemistry in the steam cycle of a power plant for achieving corrosion control, deposition prevention, and higher cycle efficiency. It discusses the materials requirements of the components exposed to supercritical water in supercritical (SC) and ultrasupercritical (USC) power plants. These components include high-pressure steam piping and headers, superheater and reheater tubing, water wall tubing in the boiler, high-and intermediate-pressure rotors, rotating blades, and bolts in the turbine section. The article reviews the boiler alloys, used in SC and USC boilers, such as ferritic steels, austenitic steels, and nickel-base alloys. It provides information on the materials used in turbine applications such as ferritic rotor steels, turbine blade alloys, and bolting materials. The article explains various factors influencing steamside corrosion in SC power plants. It also deals with the role of overall efficiency in the USC power generation.
Book Chapter
Thermal Spray Technology Growth in Gas Turbine Applications
Available to PurchaseBook: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005737
EISBN: 978-1-62708-171-9
... airfoils. Design requirements are reviewed and compared between aerospace and power generation coatings. Application process improvement areas are also discussed as a method of reducing component cost. aerospace engines combustors gas turbines high-power turbine blades high-pressure compressors...
Abstract
This article provides an overview of key thermal spray coatings used in compressors, combustors, and turbine sections of a power-generation gas turbine. It describes the critical components, including combustors, transition ducts, inlet nozzle guide vanes, and first-stage rotating airfoils. Design requirements are reviewed and compared between aerospace and power generation coatings. Application process improvement areas are also discussed as a method of reducing component cost.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006094
EISBN: 978-1-62708-175-7
... prealloyed powder superalloys THE TERM SUPERALLOY is used to describe those materials with high strength at high temperatures that are used primarily in turbine engines for aircraft and power generation. Superalloys are predominantly nickel-base alloys that are strengthened by solid-solution elements...
Abstract
Superalloys are predominantly nickel-base alloys that are strengthened by solid-solution elements including molybdenum, tungsten, cobalt, and by precipitation of a Ni 3 (Al, Ti) type compound designated as gamma prime and/or a metastable Ni 3 Nb precipitate designated as gamma double prime. This article provides a discussion on the conventional processing, compositions, characteristics, mechanical properties, and applications of powder metallurgy (PM) superalloys. The conventional processing of PM superalloys involves production of spherical prealloyed powder, screening to a suitable maximum particle size, blending the powder to homogenize powder size distribution, loading powder into containers, vacuum outgassing and sealing the containers, and consolidating the powder to full density. PM superalloys include Rene 95, IN-100, LC Astroloy, Udimet 720, N18, ME16, RR1000, Rene 88DT, PA101, MERL 76, AF2-1DA, Inconel 706, AF115, and KM4. The article reviews specialized PM superalloy processes and technical issues in the usage of PM superalloys.
Book Chapter
Diffusion Coatings
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001293
EISBN: 978-1-62708-170-2
... in Heat Treating, Volume 4 of the ASM Handbook; see the articles “Boriding (Boronizing)” and “Thermoreactive Deposition/Diffusion Process,” respectively. Diffusion Coatings for Gas Turbine Engine Hot Section Parts Blades and vanes made from nickel- and cobalt-base superalloys that are used...
Abstract
This article describes the widespread use of diffusion coatings for elevated-temperature protection of the turbine components for aircraft engines and gas turbines. The principles of pack diffusion coating, namely, aluminizing, chromizing, and siliconizing, are discussed. The article presents information on the coating formation mechanism of superalloys and explains the steps involved in a typical pack cementation process. It concludes with information on the processing procedures and properties of pack aluminized steels.
Book Chapter
High-Temperature Corrosion-Related Failures
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... coatings that improve performance of superalloy. diffusion gas turbines high-temperature coatings high-temperature corrosion interdiffusion oxidation superalloys WHEN CORROSION FAILURES OCCUR at high temperatures (300 to 1700 °C, or 570 to 3090 °F), the unscheduled outages result in loss...
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
Book Chapter
Abradable Thermal Spray Applications and Technology
Available to PurchaseBook: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005738
EISBN: 978-1-62708-171-9
... ceramics ABRADABLE CLEARANCE-CONTROL COATINGS are successfully used today (2013) in aero-engine, industrial and steam turbine, and various other types of turbomachinery applications. In most types of turbines, it is necessary to leave clearances beyond the free ends of the blades and vanes to provide...
Abstract
This article provides an overview of key abradable thermal spray coating systems based on predominant function and key design criteria. It describes two families of coatings which have evolved for use at higher temperature: flame (combustion)-sprayed abradable powders and atmospheric plasma-sprayed abradable powders. Three classic examples of flame spray abradables are nickel-graphite powders, NiCrAl-bentonite powders, and NiCrFeAl-boron nitride powders. The article provides information on various abradable coating testing procedures, namely, abradable incursion testing; aging, corrosion, thermal cycle and thermal shock testing; hardness testing; and erosion resistance testing.
Book Chapter
Thermomechanical Fatigue—Mechanisms and Practical Life Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006781
EISBN: 978-1-62708-295-2
... of interest based on loading conditions, boundary conditions, the ability to inspect the component, and the effect of failure on surrounding components and human life, among other things. In a general way, failure may be thought of as loss of function of the part. As an example, failure for a turbine blade...
Abstract
Thermomechanical fatigue (TMF) is the general term given to the material damage accumulation process that occurs with simultaneous changes in temperature and mechanical loading. TMF may couple cyclic inelastic deformation accumulation, temperature-assisted diffusion within the material, temperature-assisted grain-boundary evolution, and temperature-driven surface oxidation, among other things. This article discusses some of the major aspects and challenges of dealing with TMF life prediction. It describes the damage mechanisms of TMF and covers various experimental techniques to promote TMF damage mechanisms and elucidate mechanism coupling interactions. In addition, life modeling in TMF conditions and a practical application of TMF life prediction are presented.
Book Chapter
Dispersion-Strengthened Nickel-Base and Iron-Base Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001103
EISBN: 978-1-62708-162-7
.... Mechanical Alloying Alloy Applications MA ODS (oxide dispersion-strengthened) alloys were used first in aircraft gas-turbine engines and later in industrial turbines. Components include vane airfoils and platforms, blades, nozzles, and combustor/augmentor assemblies. As experience was gained...
Abstract
Oxide dispersion-strengthened (ODS) alloys are produced by mechanical alloying, a process by which base metals and alloying particles are powdered together forming a metal-matrix composite. This article discusses the production of ODS superalloy powders and subsequent processing steps, including consolidation, hot rolling, heat treating, and the fabrication of mill products. It also discusses the nominal composition and microstructure of commercial ODS alloys, including nickel, iron, and aluminum-base systems, and provides detailed information on their mechanical, physical, oxidation, and hot-corrosion properties.
1