Skip Nav Destination
Close Modal
By
Daniel J. Benac, V.P. Swaminathan, Ph.D.
By
Gordon R. Holcomb
By
Scott Wilson
By
Henry L. Bernstein, Ronald L. McAlpin
By
Mitchell R. Dorfman, D. Sporer, P. Meyer
By
K. Harris, G.L. Erickson, R.E. Schwer
By
Frank Schoofs, Fernando Garcia, Ole Geisen
By
David A. Shifler
Search Results for
Turbine blade steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 384
Search Results for Turbine blade steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Two portions of a modified type 403 stainless steel steam turbine blade dam...
Available to PurchasePublished: 01 January 2002
Fig. 9 Two portions of a modified type 403 stainless steel steam turbine blade damaged by liquid impingement erosion. The portion at left was protected by a shield of 1 mm (0.04 in.) thick rolled Stellite 6B brazed onto the leading edge of the blade; the portion at right was unprotected
More
Image
Two portions of a modified type 403 stainless steel steam turbine blade dam...
Available to PurchasePublished: 15 January 2021
Fig. 9 Two portions of a modified type 403 stainless steel steam turbine blade damaged by liquid impingement erosion. The portion at left was protected by a 1 mm (0.04 in.) thick shield made of rolled Stellite 6B brazed onto the leading edge of the blade; the portion at right was unprotected
More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004155
EISBN: 978-1-62708-184-9
... with 12Cr stainless steel ( Ref 16 ). Marginally designed LP turbine blades have been replaced by better designs with reduced vibration excitation and with blades without tenon-to-shroud crevices (with integral shroud sections) ( Ref 2 , 3 , 6 ). Mixed-tuned blade rows are being used for longer blades...
Abstract
The steam turbine is the simplest and most efficient engine for converting large amounts of heat energy into mechanical work. This article discusses the primary corrosion mechanisms such as corrosion fatigue, stress-corrosion cracking (SCC), pitting, corrosion, and erosion-corrosion, in steam turbines. It illustrates the various causes of the corrosiveness of the steam turbine environments through a Mollier diagram. The article describes the four parts of design disciplines that affect turbine corrosion, namely, mechanical design, heat transfer, flow and thermodynamics, and physical shape. It lists the ways to control the steam and surface chemistry, and design and material improvements to minimize turbine corrosion.
Book Chapter
Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... versus the time. More information is presented later in this article. Fig. 4 Examples of thermal-mechanical fatigue cracking and oxidation in a first-stage turbine blade Metallurgical Instabilities Metallurgical instabilities form when superalloy turbine blades and steel tubes or piping...
Abstract
This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing. The article discusses metallurgical instabilities of steel-based alloys and nickel-base superalloys. It provides information on several life assessment methods, namely, the life fraction rule, parameter-based assessments, the thermal-mechanical fatigue, coating evaluations, hardness testing, microstructural evaluations, the creep cavitation damage assessment, the oxide-scale-based life prediction, and high-temperature crack growth methods.
Book Chapter
Corrosion in Supercritical Water—Ultrasupercritical Environments for Power Production
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004133
EISBN: 978-1-62708-184-9
... boilers, such as ferritic steels, austenitic steels, and nickel-base alloys. It provides information on the materials used in turbine applications such as ferritic rotor steels, turbine blade alloys, and bolting materials. The article explains various factors influencing steamside corrosion in SC power...
Abstract
This article describes the control of water chemistry in the steam cycle of a power plant for achieving corrosion control, deposition prevention, and higher cycle efficiency. It discusses the materials requirements of the components exposed to supercritical water in supercritical (SC) and ultrasupercritical (USC) power plants. These components include high-pressure steam piping and headers, superheater and reheater tubing, water wall tubing in the boiler, high-and intermediate-pressure rotors, rotating blades, and bolts in the turbine section. The article reviews the boiler alloys, used in SC and USC boilers, such as ferritic steels, austenitic steels, and nickel-base alloys. It provides information on the materials used in turbine applications such as ferritic rotor steels, turbine blade alloys, and bolting materials. The article explains various factors influencing steamside corrosion in SC power plants. It also deals with the role of overall efficiency in the USC power generation.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
... accumulate in a relatively short time, as illustrated by deep erosion in a stainless steel overlay on a carbon steel blade in a Francis turbine after about 7000 h ( Fig. 6 ), and erosion completely through a carbon steel impeller in a 5000 hp pump after about 20,000 h ( Fig. 7 ). A previous repair...
Abstract
Erosion of solid surfaces can be brought about solely by liquids in two ways: from damage induced by formation and subsequent collapse of voids or cavities within the liquid, and from high-velocity impacts between a solid surface and liquid droplets. The former process is called cavitation erosion and the latter is liquid-droplet erosion. This article emphasizes on manifestations of damage and ways to minimize or repair these types of liquid impact damage, with illustrations.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006824
EISBN: 978-1-62708-329-4
... these features. The majority of HCF cracking in turbomachinery failures is transgranular, although intergranular propagation has been observed where corrosion is active. Intergranular HCF cracking has been observed in steam turbine blades manufactured from 400-series stainless steel forgings, which may have...
Abstract
This article focuses on common failures of the components associated with the flow path of industrial gas turbines. Examples of steam turbine blade failures are also discussed, because these components share some similarities with gas turbine blading. Some of the analytical methods used in the laboratory portion of the failure investigation are mentioned in the failure examples. The topics covered are creep, localized overheating, thermal-mechanical fatigue, high-cycle fatigue, fretting wear, erosive wear, high-temperature oxidation, hot corrosion, liquid metal embrittlement, and manufacturing and repair deficiencies.
Book Chapter
Abradable Thermal Spray Applications and Technology
Available to PurchaseBook: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005738
EISBN: 978-1-62708-171-9
... ( Fig. 6 ) and can be sprayed to different hardness levels by spray parameter adjustment ( Ref 19 ). These coatings are suited for rub incursions against steel and nickel alloy blades, knives, and labyrinth seal strips such as those used in steam turbine balance piston applications ( Ref 20...
Abstract
This article provides an overview of key abradable thermal spray coating systems based on predominant function and key design criteria. It describes two families of coatings which have evolved for use at higher temperature: flame (combustion)-sprayed abradable powders and atmospheric plasma-sprayed abradable powders. Three classic examples of flame spray abradables are nickel-graphite powders, NiCrAl-bentonite powders, and NiCrFeAl-boron nitride powders. The article provides information on various abradable coating testing procedures, namely, abradable incursion testing; aging, corrosion, thermal cycle and thermal shock testing; hardness testing; and erosion resistance testing.
Book Chapter
Corrosion of Industrial Gas Turbines
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004158
EISBN: 978-1-62708-184-9
... International Corrosion in the Combustor and Turbine Sections The materials commonly found in the combustor and turbine sections are superalloys and stainless steels. Nickel-base superalloys are typically used for combustor liners, transitions, blades, vanes, shrouds, and sometimes disks because...
Abstract
The corrosion issues in the compressor, combustor and turbine sections of industrial gas turbines used in steam production generally depend on the quality of the fuel, air, and water used in the engine than on the specific industrial application. This article focuses on the forms of corrosion and their preventive measures in the compressor, combustor and turbine sections of a steam turbine. The compressor section mainly suffers from aqueous corrosion; while in case of the combustor and turbine sections, which are made of nickel-base superalloys, high-temperature environmental attack in the form of high-temperature oxidation and hot corrosion are predominant. The effect of high-temperature oxidation and hot corrosion on the mechanical properties of superalloys is also discussed.
Book Chapter
Thermal Spray Technology Growth in Gas Turbine Applications
Available to PurchaseBook: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005737
EISBN: 978-1-62708-171-9
... airfoils. Design requirements are reviewed and compared between aerospace and power generation coatings. Application process improvement areas are also discussed as a method of reducing component cost. aerospace engines combustors gas turbines high-power turbine blades high-pressure compressors...
Abstract
This article provides an overview of key thermal spray coatings used in compressors, combustors, and turbine sections of a power-generation gas turbine. It describes the critical components, including combustors, transition ducts, inlet nozzle guide vanes, and first-stage rotating airfoils. Design requirements are reviewed and compared between aerospace and power generation coatings. Application process improvement areas are also discussed as a method of reducing component cost.
Image
Surface appearance at low magnification of a steam turbine blade eroded by ...
Available to PurchasePublished: 01 January 2002
Fig. 10 Surface appearance at low magnification of a steam turbine blade eroded by water droplets. (a) 12% Cr steel blade material. (b) Stellite 6B shield
More
Book Chapter
Directionally Solidified and Single-Crystal Superalloys
Available to PurchaseSeries: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001051
EISBN: 978-1-62708-161-0
... ), The Metallurgical Society , 1984 , p 220 – 221 29. Khan T. , Caron P. , Fournier D. , and Harris K. , “Single Crystal Superalloys for Turbine Blades: Characterization and Optimization of CMSX-2 Alloy,” Paper presented at the 11th Symposium on Steels & Special Alloys for Aerospace...
Abstract
Directionally solidified (DS) and single-crystal (SX) superalloys and process technology are contributing to significant advances in turbine engine efficiency and durability. These gains are expected to arise from the development of higher creep strength and improved oxidation-resistant SX alloy compositions as well as from the development of SX casting and fabrication technology to utilize advanced transpiration-cooling schemes. This article provides a detailed discussion on the chemistry and castability of first- and second-generation DS and SX superalloys. It summarizes the chemistry modifications applied to MAR-M 247 to develop CMSX-2 with respect to function and objectives. The article also lists the nominal compositions of first- and second-generation DS and SX superalloys.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006428
EISBN: 978-1-62708-192-4
... with key components and examples of wear. Source: Ref 2 , 3 , 4 . (b) Fretting damage location on dovetail joint, Courtesy of Lambda Technologies Group. (c) Microcracks on dovetail joint, Courtesy of Lambda Technologies Group. (d) Droplet erosion of 403 martensitic stainless steel. (e) Blade tip showing...
Abstract
This article illustrates typical wear and friction issues encountered in gas and steam turbines and their consequences as well as commonly adopted materials solutions. It contains tables that present the summary of wear and friction related issues encountered in steam turbines and gas turbines. The article outlines the differences in the operating conditions and the nature of the components involved in gas and steam turbines. It discusses the constraints and applicable coating solutions for wear and friction issues, and concludes with a broad set of challenges that need to be addressed to improve performance and operability of gas and steam turbines.
Image
Deep cavitation erosion of austenitic stainless steel weld overlay on a car...
Available to PurchasePublished: 01 January 2002
Fig. 6 Deep cavitation erosion of austenitic stainless steel weld overlay on a carbon steel turbine blade. Courtesy of T.J. Spicher
More
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006378
EISBN: 978-1-62708-192-4
.... This last remedy has been accomplished by local laser treatment, induction or flame hardening of the blade material, by brazed-on shields of Stellite, or, in some cases, by shields of tool steel or weld-deposited hardfacing. The evaluation and prediction of steam turbine blade erosion is very complex...
Abstract
Liquid impingement erosion has been defined as progressive loss of original material from a solid surface due to continued exposure to impacts by liquid drops or jets. This article focuses on the core nature of erosion by liquid impingement, due to the greater appreciation of the distinctions between the different forms of erosion. It discusses steam turbine blade erosion, aircraft rain erosion, and rain erosion of wind turbine blades. The article describes the mechanisms of liquid impact erosion and time dependence of erosion rate. It reviews critical empirical observations regarding both impingement variables (velocity, impact angle, droplet size, and physical properties of liquids) and erosion resistance of materials, including the correlation between erosion resistance and mechanical properties and the effects of alloying elements and microstructure. The article also provides information on the ways to combat erosion.
Book Chapter
Additive Manufacturing in the Nuclear and Wind Energy Sectors
Available to PurchaseSeries: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0007019
EISBN: 978-1-62708-439-0
... development of a 13 m (43 ft) wind turbine blade mold using AM ( Fig. 3 ) by Oak Ridge National Laboratory (ORNL) in collaboration with Sandia National Laboratories, TPI Composites, and National Renewable Energy Laboratory (NREL) ( Ref 23 ). At that time, several benefits were identified that would justify...
Abstract
Nuclear energy harnesses the power of atomic interactions, whether through the fission of large nuclei or the fusion of light elements. Additive manufacturing (AM) can play several roles in this sector and is actively being researched and applied, although challenges remain. This article provides a discussion of the opportunities, challenges, and example use cases of AM in the nuclear and wind energy sectors.
Image
Joint area between Stellite 6B (top) and 12% Cr steel (bottom) of a steam t...
Available to PurchasePublished: 01 January 2002
Fig. 9 Joint area between Stellite 6B (top) and 12% Cr steel (bottom) of a steam turbine blade eroded by water droplets
More
Book Chapter
Surface Engineering of Stainless Steels and Heat-Resistant Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003220
EISBN: 978-1-62708-199-3
... favorable patterns of residual stress. Although all turbine-blade dovetails are peened with steel shot, glass beads are sometimes favored over metallic shot in other shot-peening applications. Metals Handbook Desk Edition, Second Edition Copyright © 1998 ASM International® J.R. Davis, Editor, p 1170-1171...
Abstract
Although stainless steel is naturally passivated by exposure to air and other oxidizers, additional surface treatments are needed to prevent corrosion. Passivation, pickling, electropolishing, and mechanical cleaning are important surface treatments for the successful performance of stainless steel. This article describes the surface treatment of stainless steels including abrasive blast cleaning, acid pickling, salt bath descaling, passivation treatments, electropolishing, and the necessary coating processes involved. It also describes the surface treatment of heat-resistant alloys including metallic contaminant removal, tarnish removal, oxide and scale removal, finishing, and coating processes.
Book Chapter
High-Temperature Corrosion in Military Systems
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004124
EISBN: 978-1-62708-184-9
... Abstract High-temperature exposure of materials occurs in many applications such as power plants (coal, oil, natural gas, and nuclear), land-based gas turbine and diesel engines, gas turbine engines for aircraft, marine gas turbine engines for shipboard use, waste incineration, high-temperature...
Abstract
High-temperature exposure of materials occurs in many applications such as power plants (coal, oil, natural gas, and nuclear), land-based gas turbine and diesel engines, gas turbine engines for aircraft, marine gas turbine engines for shipboard use, waste incineration, high-temperature fuel cells, and missile components. This article discusses high-temperature corrosion in boilers, diesel engines, gas turbines, and waste incinerators. Boilers are affected by stress rupture failures, waterside corrosion failures, fireside corrosion failures, and environmental cracking failures. Contamination of combustion fuel in diesel engines can cause high-temperature corrosion. Gas turbine engines are affected by hot corrosion. Refractory-lined incinerators and alloy-lined incinerators are discussed. The article provides case studies for each component failure.
Image
Some aircraft and aerospace applications for investment castings. (a) Singl...
Available to PurchasePublished: 01 December 2008
Fig. 5 Some aircraft and aerospace applications for investment castings. (a) Single-crystal turbine blades investment cast using complex ceramic cores. Courtesy of Pratt and Whitney Aircraft. (b) 17-4-PH stainless steel fan exit case; weight: 96 kg (212 lb). Courtesy of Precision Castparts
More
1