Skip Nav Destination
Close Modal
Search Results for
Surgical implants
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 124 Search Results for
Surgical implants
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005654
EISBN: 978-1-62708-198-6
... presents the factors related to the use of surgical implants and their deterioration in the body environment, including biomedical aspects, chemical environment, and electrochemical fundamentals needed for characterizing CF and SCC. It provides a discussion on the use of metallic biomaterials in surgical...
Abstract
This article describes mechanical/electrochemical phenomena related to in vivo degradation of metals used for biomedical applications. It discusses the properties and failure of these materials as they relate to stress-corrosion cracking (SCC) and corrosion fatigue (CF). The article presents the factors related to the use of surgical implants and their deterioration in the body environment, including biomedical aspects, chemical environment, and electrochemical fundamentals needed for characterizing CF and SCC. It provides a discussion on the use of metallic biomaterials in surgical implant applications, such as orthopedic, cardiovascular surgery, and dentistry. It addresses key issues related to the simulation of an in vivo environment, service conditions, and data interpretation. These include the frequency of dynamic loading, electrolyte chemistry, applicable loading modes, cracking mode superposition, and surface area effects. The article explains the fundamentals of CF and SCC, and presents the test findings from laboratory, in vivo, and retrieval studies.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000618
EISBN: 978-1-62708-181-8
... fracture, microcrack, and stair-step fracture surface of these alloys. cobalt alloys fatigue fracture fractograph surgical implants Fig. 881, 882 Fatigue fracture of a cast Vitallium (Co-30Cr-7Mo) surgical implant (side plate of Jewett nail) due to improper insertion. A tool used...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of cobalt alloys (cast Vitallium and cast ASTM F75 alloys) and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the fatigue fracture, microcrack, and stair-step fracture surface of these alloys.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004208
EISBN: 978-1-62708-184-9
.... Background This section considers necessary background information pertinent to understanding factors related to the use of surgical implants and their deterioration in the body environment. These include both biomedical aspects such as active biological responses and the chemical environment...
Abstract
This article provides information on biomedical aspects such as active biological responses and the chemical environment characterizing the internal physiological milieu, as well as electrochemical fundamentals needed for characterizing corrosion fatigue (CF) and stress-corrosion cracking (SCC). It discusses some of the mechanical and electrochemical phenomena related to the in vivo degradation of materials used for biomedical applications. These materials include stainless steels, cobalt and titanium-base alloy systems, and dental amalgam. The article addresses key issues related to the simulation of the in vivo environment, service conditions, and data interpretation. The factors influencing susceptibility to CF and SCC are reviewed. The article describes the testing methodology of CF and SCC. It also summarizes findings from laboratory testing, in vivo testing and retrieval studies related to CF and SCC.
Image
in Titanium and Titanium Alloy Castings
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 18 Titanium surgical knee and hip implant prostheses manufactured by the investment casting process
More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004207
EISBN: 978-1-62708-184-9
... corrosion of surgical implant materials. Two methods for localized corrosion properties include: ASTM F 746 ( Ref 67 ), “Test Method for Pitting or Crevice Corrosion of Metallic Surgical Implant Materials” ASTM F 2129 ( Ref 68 ), “Test Method for Conducting Cyclic Potentiodynamic Polarization...
Abstract
This article tabulates the chemical composition of iron-base, titanium-base, and cobalt-base alloys and illustrates the microstructures of these materials. It discusses the surface morphology and chemistry of oxide-film-covered alloys and provides insights into the interaction. The article illustrates the interfacial structure of a biomaterial surface contacting with the biological environment. It describes the corrosion behavior of stainless steel, cobalt-base alloy, and titanium alloys. The electrochemical methods used for studying metallic biomaterials corrosion are also discussed. The article concludes with information on the biological consequences of in vivo corrosion and biocompatibility.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003168
EISBN: 978-1-62708-199-3
... corrosion, pitting and crevice corrosion, stress-corrosion cracking, corrosion fatigue, and intergranular corrosion. None of these forms, with the exception of general corrosion, can be tolerated in surgical implant materials. For a material to be considered resistant to corrosion in the body, its general...
Abstract
Biomaterials are the man-made metallic, ceramic, and polymeric materials used for intracorporeal applications in the human body. This article primarily focuses on metallic materials. It provides information on basic metallurgy, biocompatibility, chemistry, and the orthopedic and dental applications of metallic biomaterials. A table compares the mechanical properties of some common implant materials with those of bone. The article also provides information on coatings, ceramics, polymers, composites, cements, and adhesives, especially where they interact with metallic materials.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006889
EISBN: 978-1-62708-392-8
... BioDur CCM Plus Joint replacements F1537-20 wrought 9 Fixation devices Co-20Cr-15W-10Ni F90-14 wrought 6 Haynes-Stellite 21 Surgical implant applications F1091-20 wrought 10 L-605 Vascular stents, heart valves, surgical fixation wires Co-35Ni-20Cr-10Mo F562-13 wrought 5...
Abstract
This article discusses some of the additive manufacturing (AM) based fabrication of alloys and their respective mechanical, electrochemical, and in vivo performance. Firstly, it briefly discusses the three AM techniques that are most commonly used in the fabrication of metallic biomedical-based devices: binder jetting, powder-bed fusion, and directed-energy deposition. The article then characterizes the electrochemical properties of additive-manufactured/processed cobalt-chromium alloys. This is followed by sections providing an evaluation of the biological response to CoCr alloys in terms of the material and 3D printing fabrication. Discussion on the biological response as a function of direct cellular activity on the surface of CoCr alloys in static conditions (in vitro), in dynamic physiological conditions (in vivo), and in computer-simulated conditions (in silico) are further discussed in detail. Finally, the article provides information on the qualification and certification of AM-processed medical devices.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004205
EISBN: 978-1-62708-184-9
... preoperative metal sensitivity to at least one component of a commonly used cobalt-chromium alloy (UNS R30075, Ref 19 ) in 26% of 92 patients before surgery to implant a total knee replacement. Five of the patients developed eczema at the surgical site or extending over the whole body. Two of those patients...
Abstract
In the field of medical device development and testing, the corrosion of metallic parts can lead to significant adverse effects on the biocompatibility of the device. This article describes the mechanisms of metal and alloy biocompatibility. It reviews the response of implant metals and particulate materials to corrosion. The effect of metal ions from an implanted device on the human body is also discussed. The article concludes with information on the possible cancer-causing effects of metallic biomaterials.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006888
EISBN: 978-1-62708-392-8
... ). The UNE-EN ISO 13485 standard also provides a definition for implantable medical devices as any “medical device which can only be removed by medical or surgical intervention and which is intended to: be totally or partially introduced into the human body or a natural orifice; or replace an epithelial...
Abstract
Metallic alloys that are typically used for medical purposes include stainless steels, Ti-6Al-4V, and Co-Cr-Mo. This article discusses the relative merits of each of these alloys. The utilization of stainless steels in the biomedical industry, especially in relation to the additive manufacturing (AM) process, is the main focus of this article. The characteristics of various stainless steels are described subsequently, and the categories that are of relevance to the biomedical industry are identified. The types of stainless steels covered are austenitic, ferritic, martensitic, duplex, and precipitation-hardened stainless steels. The article discusses the potential benefits of AM for biomedical devices. It describes the types of AM processes for stainless steels, namely binder jet, directed-energy deposition, and laser powder-bed fusion. The article reviews the AM of austenitic, martensitic, and PH stainless steels for biomedical applications. In addition, the challenges and obstacles to the clinical use of AM parts are covered.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003661
EISBN: 978-1-62708-182-5
... from which surgical implants will be produced ( Ref 2 ). This is an electrochemical potentiostatic screening test that is used to rank surgical implant alloys in order of their resistance to localized corrosion in a 0.9% NaCl solution at 37 ± 1 °C (98.6 ± 1.8 °F) (average human body temperature). Using...
Abstract
Pitting is a form of localized corrosion that is often a concern in applications involving passivating metals and alloys in aggressive environments. This article describes the test methods for pitting corrosion. These methods include ASTM G 48, ASTM F 746, ASTM G 61, ASTM G 100, and electrochemical noise measurements. The visual examination, metallographic examination, and nondestructive inspection of pits are discussed. The article reviews the procedures for the use of standard charts, metal penetration, statistical analysis, and loss in mechanical properties to quantify the severity of pitting damage.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004206
EISBN: 978-1-62708-184-9
... of cobalt, nickel, and iron have been used. More recently, the use of titanium has increased dramatically in dental applications such as dental implants. Metal alloys have been used in orthopedic applications in greatest amounts related to fracture fixation devices and total joint arthroplasties. Alloys...
Abstract
This article reviews the understanding of corrosion interactions between alloys in complex geometries and in applications where there are significant cyclic stresses and potential for wear and fretting motion. These alloys include iron-base, titanium-base, and cobalt-base alloys. The article discusses the surface characteristics and electrochemical behavior of metallic biomaterials. It summaries the clinical context for mechanically assisted corrosion and describes mechanically assisted crevice corrosion. There have been several tests developed to investigate aspects of mechanically assisted corrosion. The article also explains the scratch test and the in vitro fretting corrosion test.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005653
EISBN: 978-1-62708-198-6
... fields. Much early work in metallic biomaterials was performed in the dental community where gold alloys, dental amalgams, and base metal alloys of cobalt, nickel, and iron have been used. More recently, the use of titanium has increased dramatically in dental applications such as dental implants. Metal...
Abstract
This article reviews the corrosion interactions between biomedical alloys, in particular iron-base, titanium-base, and cobalt-base alloys, in complex geometries and in applications where there are significant cyclic stresses and potential for wear and fretting motion. It discusses the nature of these metal surfaces and their propensity for corrosion reactions when combined with similar or different alloys in complex restrictive environments within the human body and under loading conditions. The article describes the factors that influence mechanically assisted crevice corrosion. It reviews the tests developed to investigate the aspects of mechanically assisted corrosion of metallic biomaterials: the scratch test and the in vitro fretting corrosion test.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005652
EISBN: 978-1-62708-198-6
... materials of construction and produced many of their own designs for solving clinical problems. In some cases, a great deal of corrosion occurred after implantation ( Ref 15 , Ref 16 , Ref 17 ) and, in some cases, necessitated device removal and debridement (surgical removal) of surrounding tissues...
Abstract
This article discusses the mechanisms of metal and alloy biocompatibility. It provides information on early testing and experience with metals in medical device applications. The article describes the response of implant and particulate materials to severe corrosion. It provides a description of metal binding and its effects on metabolic processes. Hypersensitive responses to metal ions are also reviewed. The article concludes with a discussion on the possible cancer-causing effects of metallic biomaterials.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005682
EISBN: 978-1-62708-198-6
... of the population has, in turn, led to a rapidly increasing number of surgical procedures involving prosthesis implantation, because as the human body ages, the load-bearing joints become more prone to ailments. This has resulted in an urgent need for improved biomaterials and processing technologies for implants...
Abstract
This article outlines the selection criteria for choosing an implant material for biomedical devices in orthopedic, dental, soft-tissue, and cardiovascular applications. It details the development of various implants, such as metallic, ceramic, and polymeric implants. The article discusses specific problems associated with implant manufacturing processes and the consequent compromises in the properties of functionally graded implants. It describes the manufacturing of the functionally-graded hip implant by using the LENS process. The article reviews four different types of tissue responses to the biomaterial. It discusses the testing methods of implant failure, such as in vitro and in vivo assessment of tissue compatibility.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006811
EISBN: 978-1-62708-329-4
... on the device "failures" that include fracture, wear, and corrosion. The article first discusses failure modes of long-term orthopedic and cardiovascular implants. The article then focuses on short-term implants, typically bone screws and plates. Lastly, failure modes of surgical tools are discussed...
Abstract
Bearing in mind the three-legged stool approach of device design/manufacturing, patient factors, and surgical technique, this article aims to inform the failure analyst of the metallurgical and materials engineering aspects of a medical device failure investigation. It focuses on the device "failures" that include fracture, wear, and corrosion. The article first discusses failure modes of long-term orthopedic and cardiovascular implants. The article then focuses on short-term implants, typically bone screws and plates. Lastly, failure modes of surgical tools are discussed. The conclusion of this article presents several case studies illustrating the various failure modes discussed throughout.
Book Chapter
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005673
EISBN: 978-1-62708-198-6
... Abstract Stainless steels are used for medical implants and surgical tools due to the excellent combination of properties, such as cost, strength, corrosion resistance, and ease of cleaning. This article describes the classifications of stainless steels, such as austenitic stainless steels...
Abstract
Stainless steels are used for medical implants and surgical tools due to the excellent combination of properties, such as cost, strength, corrosion resistance, and ease of cleaning. This article describes the classifications of stainless steels, such as austenitic stainless steels, martensitic stainless steels, ferritic stainless steels, precipitation-hardening stainless steels, and duplex stainless steels. It contains a table that lists common medical device applications for stainless steels. The article discusses the physical metallurgy and physical and mechanical properties of stainless steels. Medical device considerations for stainless steels, such as fatigue strength, corrosion resistance, and passivation techniques, are reviewed. The article explains the process features of implant-grade stainless steels, including type 316L, type 316LVM, nitrogen-strengthened, ASTM F1314, ASTM F1586, ASTM F2229, and ASTM F2581 stainless steels.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001080
EISBN: 978-1-62708-162-7
... to surgical implants and prosthetic devices. The corrosion behavior of titanium is discussed in detail in the article “Corrosion of Titanium and Titanium Alloys” in Corrosion, Volume 13 of ASM Handbook, formerly 9th Edition Metals Handbook. Current Titanium Technology Current titanium technology...
Abstract
Titanium has been recognized as an element with good mechanical and physical properties, alloying characteristics, and corrosion resistance. Providing an outline of general characteristics and types of titanium alloys, this article discusses the contemporary technology of titanium along with its market developments. It also discusses the application of titanium and titanium alloys in corrosive environments and in aerospace and automotive industries. The article describes the developments in titanium processing and materials technologies, which include the development of sponge production and melting processes, oxide dispersion-strengthened alloys by powder metallurgy techniques, titanium-base intermetallic compounds, and titanium-matrix composites.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006852
EISBN: 978-1-62708-392-8
..., and implants. The article includes sections on education that focus on the use of 3D-printed surgical simulators and other tools to teach medical students and residents. It briefly touches on the FDA regulations associated with the respective application of 3D printing in medicine. Lastly, the article briefly...
Abstract
This article provides highlights of the general process and workflow of creating a 3D-printed model from a medical image and discusses the applications of additively manufactured materials. It provides a brief background on Food and Drug Administration (FDA) classification and regulation of medical devices, with an emphasis on 3D-printed devices. Then, the article discusses two broad applications of 3D printing in craniofacial surgery: surgery and education. Next, it discusses, with respect to surgical applications, preoperative planning, use in the operating room, surgical guides, and implants. The article includes sections on education that focus on the use of 3D-printed surgical simulators and other tools to teach medical students and residents. It briefly touches on the FDA regulations associated with the respective application of 3D printing in medicine. Lastly, the article briefly discusses the state of medical billing and reimbursement for this service.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003148
EISBN: 978-1-62708-199-3
...-strengthened and aged Special-Purpose Alloys Orthopedic Implants Cobalt-base alloys are widely used for the fabrication of various devices that are surgically implanted in the body. Applications include hip replacements, knee replacements, and implants that fix bone fractures (bone screws, staples...
Abstract
Cobalt finds its use in various applications owing to its magnetic properties, corrosion resistance, wear resistance, and its strength at elevated temperatures. This article discusses the mining and processing of cobalt and cobalt alloys. It describes the types of cobalt alloys, including wear-resistant alloys, high-temperature alloys, corrosion-resistant alloys, and special-purpose alloys. The article provides data on the chemical composition, mechanical properties, and physical properties of these alloys. Further, it provides information on the uses of cobalt in superalloys, cemented carbides, magnetic materials, low-expansion alloys, and high-speed tool steels.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006859
EISBN: 978-1-62708-392-8
... , 5 ). There are a wide range of factors that influence the biological reaction at the interface of the implant and host tissue, including surface characteristics, anatomical location, and surgical procedures. Understanding the biological reactions is essential to creating functional bioactive...
Abstract
Powder-bed fusion (PBF) is a group of additive manufacturing (AM) processes that includes selective laser sintering, selective laser melting, and electron beam melting. This article explains the processes and parameters of PBF systems that are used for biomedical applications. It also presents the desirable properties of biomedical devices and the advantages of using PBF systems for biomedical applications.
1