1-20 of 2942

Search Results for Stress cracking

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

By Javier C. Cruz, Jeffrey A. Jansen
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006917
EISBN: 978-1-62708-395-9
... Abstract While there are many fracture mechanisms that can lead to the failure of a plastic component, environmental stress cracking (ESC) is recognized as one of the leading causes of plastic failure. This article focuses on unpacking the basic concepts of ESC to provide the engineer...
Book Chapter

By W. R. Warke
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... Abstract This article commences with a discussion on the characteristics of stress-corrosion cracking (SCC) and describes crack initiation and propagation during SCC. It reviews the various mechanisms of SCC and addresses electrochemical and stress-sorption theories. The article explains...
Book Chapter

By Bopinder Phull
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003666
EISBN: 978-1-62708-182-5
... Abstract This article describes the incubation, nucleation, and propagation of stress-corrosion cracking and how to evaluate it using standard tests. It discusses constant-strain, constant-load, bending, and uniaxial tension testing and how they compare when evaluating smooth and precracked...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002388
EISBN: 978-1-62708-193-1
... Abstract Stress-corrosion cracking (SCC) is a cracking phenomenon that occurs in susceptible alloys, and is caused by the conjoint action of tensile stress and the presence of a specific corrosive environment. This article provides an overview of the anodic dissolution mechanisms and cathodic...
Book Chapter

By Lisa N. Eastep, Michael E. Casey
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... Abstract Stress-corrosion cracking (SCC) is a form of corrosion and produces wastage in that the stress-corrosion cracks penetrate the cross-sectional thickness of a component over time and deteriorate its mechanical strength. Although there are factors common among the different forms...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005530
EISBN: 978-1-62708-197-9
... neglecting and incorporating material transformation effects, used to predict residual stresses are reviewed. The article also explains the various aspects of models used to prevent cracking during heating and quenching. cooling rate crack resistance heat-transfer coefficient quench cracking...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006545
EISBN: 978-1-62708-210-5
... Abstract In high-strength aluminum alloys, stress-corrosion cracking (SCC) is known to occur in ordinary atmospheres and aqueous environments. This article discusses the mechanisms of SCC in aluminum alloys, providing information on two main types of SCC models: those of anodic dissolution...
Book Chapter

By R.H. Jones
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003633
EISBN: 978-1-62708-182-5
... Abstract Stress-corrosion cracking (SCC) is a phenomenon in which time-dependent crack growth occurs when the necessary electrochemical, mechanical, and metallurgical conditions exist. This article provides an overview of the environmental phenomenon, mechanisms, and controlling parameters...
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005654
EISBN: 978-1-62708-198-6
... Abstract This article describes mechanical/electrochemical phenomena related to in vivo degradation of metals used for biomedical applications. It discusses the properties and failure of these materials as they relate to stress-corrosion cracking (SCC) and corrosion fatigue (CF). The article...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004208
EISBN: 978-1-62708-184-9
... related to CF and SCC. biological response cobalt alloys corrosion fatigue dental amalgam stainless steels stress-corrosion cracking titanium alloys AS THE FIELD OF BIOMATERIALS SCIENCE proceeds into the 21st century, many changes are taking place. Traditionally, biomaterials have been...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004147
EISBN: 978-1-62708-184-9
... for irradiation-assisted stress-corrosion cracking. The article addresses the effects of various radiation factors on corrosion. These include radiation-induced segregation at grain boundaries, radiation hardening, mode of deformation, radiation creep relaxation, and radiolysis. The article discusses a variety...
Image
Published: 01 January 2002
Fig. 1 Effect of environmental stress cracking agents on creep rupture performance More
Image
Published: 01 January 2003
Fig. 51 Method of plotting results of sulfide stress cracking tests. Open symbols indicate failure; closed symbols indicate runouts. Source: Ref 120 More
Image
Published: 01 December 1998
Fig. 15 Incubation time prior to hydrogen stress cracking for AISI type 4340 and type D-6AC steel contoured double-cantilever beam test specimens as a function of decrease in stress intensity More
Image
Published: 15 May 2022
Fig. 1 Effect of environmental stress cracking agents on creep rupture performance More
Image
Published: 15 May 2022
Fig. 8 Environmental stress cracking fixtures for strain-controlled bent test according to (a) ISO 22088-3 and (b) ASTM D543, Practice B More
Image
Published: 15 May 2022
Fig. 12 Micrograph showing environmental stress cracking fractures originating at a design corner within a molded component. Multiple cracks initiated, extended, and subsequently coalesced to form the fracture. Ridgelike features representing crack unions are present between the individual More
Image
Published: 01 June 2024
Fig. 19 Environmental stress-cracking fracture surface for a polycarbonate component consisting of rib marks and localized deformed polymer. (a) Uncoated specimen, low-vacuum mode, backscattered electron compositional imaging, 10 kV accelerating voltage with a tungsten thermal-emission SEM More
Image
Published: 01 June 2024
Fig. 17 OM images of a CPVC environmental stress cracking fracture surface after exposure to a 50:50 mixture of DOP and mineral oil at 1% strain. (a) Overall fracture surface highlighting multiple crack origins along the bottom edge of the sample (red arrows). (b) Magnified image of the slow More
Image
Published: 01 January 2006
Fig. 36 Sulfide stress cracking of a hard weld of a carbon steel vessel in sour water service. BHN, Brinell hardness. 40× More