Skip Nav Destination
Close Modal
Search Results for
SEM fractography
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 138 Search Results for
SEM fractography
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 13 Sheared-off cast cobalt-chromium-molybdenum screw. SEM fractography. (a) Overview of portion of rough fracture surface. (b) Area with fracture planes of three differently oriented grains (single arrow, a). (c) Shearing structures and dimples in grain identified by the numeral 1 in (b
More
Image
Published: 30 August 2021
Fig. 14 (a) Fracture surface and (b) SEM fractography of a coil that failed due to excessive decarburization
More
Image
Published: 15 May 2022
Fig. 8 SEM fractography shows the fatigue-fracture process in a high-density polyethylene sample fatigued at 23 °C (73 °F) and a frequency of 1 Hz. From the notch at (a) 4 mm (0.2 in.) and (b) 8 mm (0.4 in.). The arrows in (b) point to filler material particles. Source: Ref 65
More
Image
Published: 01 January 2024
Fig. 11 SEM and deep-focus optical fractography examples of changes in fatigue fracture surface orientations due to load history variations. (a) Changes in overall fracture planes for AA7075-T6 aluminum alloy thin plate when a simple flight-by-flight variable-amplitude load sequence
More
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001835
EISBN: 978-1-62708-181-8
... Abstract Scanning electron microscopy (SEM) has unique capabilities for analyzing fracture surfaces. This article discusses the basic principles and practice of SEM, with an emphasis on its applications in fractography. The topics include an introduction to SEM instrumentation, imaging...
Abstract
Scanning electron microscopy (SEM) has unique capabilities for analyzing fracture surfaces. This article discusses the basic principles and practice of SEM, with an emphasis on its applications in fractography. The topics include an introduction to SEM instrumentation, imaging and analytical capabilities, specimen preparation, and the interpretation of fracture features. SEM can be subdivided into four systems, namely, illuminating/imaging, information, display, and vacuum systems. The article also describes the major criteria and techniques of SEM specimen preparation, and the general features of ductile and brittle fracture modes.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006943
EISBN: 978-1-62708-395-9
... shows an interspherulitic fracture of a polyoxymethylene (POM) sample. Examples of spherulites in the fractography of POM polymers are presented in a later section. One of the important SEM fracture-surface features of polymers are fibrils, a structural entity in polymers. Fibrils occur...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003536
EISBN: 978-1-62708-180-1
.... Development of the scanning electron microscope (SEM), and more recently, of powerful digital image analysis equipment, has led to significant advances in quantitative fractography. Numerous quantitative correlations between the material properties such as strength, ductility, toughness, and fatigue life...
Abstract
The quantitative characterization of fracture surface geometry, that is, quantitative fractography, can provide useful information regarding the microstructural features and failure mechanisms that govern material fracture. This article is devoted to the fractographic techniques that are based on fracture profilometry. This is followed by a section describing the methods based on scanning electron microscope fractography. The article also addresses procedures for three-dimensional fracture surface reconstruction. In each case, sufficient methodological details, governing equations, and practical examples are provided.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003533
EISBN: 978-1-62708-180-1
... column, signal detection and display equipment, and vacuum system. It discusses the preparation of samples for observation using an SEM and describes the application of SEM in fractography. If the surface remains unaffected and undamaged by events subsequent to the actual failure, it is often a simple...
Abstract
The scanning electron microscopy (SEM) is one of the most versatile instruments for investigating the microstructure of metallic materials. This article highlights the development of SEM technology and describes the operation of basic systems in an SEM, including the electron optical column, signal detection and display equipment, and vacuum system. It discusses the preparation of samples for observation using an SEM and describes the application of SEM in fractography. If the surface remains unaffected and undamaged by events subsequent to the actual failure, it is often a simple matter to determine the failure mode by the use of an SEM. In cases where the surface is altered after the initial failure, the case may not be so straightforward. The article presents typical examples that illustrate these points. Image dependence on the microscope type and operating parameters is also discussed.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006769
EISBN: 978-1-62708-295-2
..., and the application of SEM in fractography is discussed. The article covers the failure mechanisms of ductile failure, brittle failure, mixed-mode failure, and fatigue failure. Lastly, image dependence on microscope type and operating parameters is also discussed. fractography microstructure sample...
Abstract
The scanning electron microscope (SEM) is one of the most versatile instruments for investigating the microscopic features of most solid materials. The SEM provides the user with an unparalleled ability to observe and quantify the surface of a sample. This article discusses the development of SEM technology and operating principles of basic systems of SEM. The basic systems covered include the electron optical column, signal detection and display equipment, and the vacuum system. The processes involved in the preparation of samples for observation using an SEM are described, and the application of SEM in fractography is discussed. The article covers the failure mechanisms of ductile failure, brittle failure, mixed-mode failure, and fatigue failure. Lastly, image dependence on microscope type and operating parameters is also discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003542
EISBN: 978-1-62708-180-1
... (SEM), transmission electron microscopy, atomic force microscopy, and other specialized methods. The bulk of the observations by far are done with low-magnification optical microscopy, often using a stereographic microscope, and with higher-magnification SEM. The primary goal of most fractographic...
Abstract
Fractography is the means and methods for characterizing a fractured specimen or component. This includes the examination of fracture-exposed surfaces and the interpretation of the fracture markings as well as the examination and interpretation of crack patterns. This article describes the former of these two parts of fractography. It presents the techniques of fractography and explains fracture markings using glass and ceramic examples. The article also discusses the fracture modes in ceramics and provides examples of fracture origins.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 2024
DOI: 10.31399/asm.hb.v12.a0006841
EISBN: 978-1-62708-387-4
... (SEM fractography) in the mid-1960s, this interest has been restricted mainly to analyzing engineering alloy fracture characteristics and the failures of engineering structures. Optical and SEM metallography, the latter combined with chemical analyses, have proven to be powerful diagnostic...
Abstract
This article discusses fractures and cracks due to ancient artifact weaknesses. It provides several case studies to aid the appreciation of fractography as a diagnostic technique and to understand the importance of cracking. These case histories concern ancient gold and silver alloys, bronzes, and wrought irons. The article considers the applicabilities of fractography, metallography, and chemical analyses in answering archaeological and archaeometallurgical questions. The article also discusses the restoration and conservation of corroded and embrittled artifacts, including the use of coatings.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003539
EISBN: 978-1-62708-180-1
... since the 1950s, and scanning electron microscopes (SEMs) have been commercially available for more than 35 years ( Ref 22 ). Today, the SEM is standard equipment for any laboratory performing failure analysis and fractography. The SEM offers significantly superior resolution and depth of field compared...
Abstract
This article commences with a summary of fatigue processes and mechanisms. It focuses on fractography of fatigue. Characteristic fatigue fracture features that can be discerned visually or under low magnification are described. Typical microscopic features observed on structural metals are presented subsequently, followed by a brief discussion of fatigue in nonmetals. The article reviews the various macroscopic and microscopic features to characterize the history and growth rate of fatigue in metals. It concludes with a description of fatigue of polymers and composites.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 2024
DOI: 10.31399/asm.hb.v12.a0006842
EISBN: 978-1-62708-387-4
... to simulate failure Data review, formulation of conclusions, and reporting Fractography, arguably the most valuable step in the failure analysis of a fractured component, has been used for centuries in the field of metallurgy. The tools for modern fractography (e.g., the SEM) were essentially...
Abstract
This article addresses macroscale fracture appearances, microscale fracture-surface appearances or morphologies, fracture mechanisms, and those factors that influence fractures and fracture appearances. Some of the macroscopic and microscopic features identified by the failure analyst to evaluate the fracture surfaces of metals and plastics are described and compared.
Book
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 2024
DOI: 10.31399/asm.hb.v12.9781627083874
EISBN: 978-1-62708-387-4
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003058
EISBN: 978-1-62708-200-6
... specimens All specimens, or as many specimens as necessary such that combined optical and SEM inspection characterize 90% (100% for design) of all identifiable origins Source: Fractography and Characterization of Fracture Origins in Advanced Structural Ceramics , Military Handbook 790 (MIL-HDBK-790...
Abstract
Failure analysis is a process of acquiring specified information regarding the appropriateness of the design of a part, the competence with which the various steps of its manufacture have been performed, any abuse suffered by it in packing and transportation, or the severity of service under which failure has occurred. Beginning with a discussion of the various stages of failure analysis of glass and ceramic materials, this article focuses on descriptive and quantitative fracture surface analysis techniques that are used in the examination of glass and surfaces created by fracture and the interpretation of the fracture markings seen on these surfaces. Details are provided for the procedures for locating fracture origins, determining direction of crack propagation, learning the sequence of crack propagation, deducing the stress state at the time of fracture, and observing interactions between crack fronts and inclusions, etc. A separate fractography terminology is provided in this article.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001837
EISBN: 978-1-62708-181-8
... relationships to be set up for features in the fracture surface (see the section “Analytical Procedures” in this article for a discussion of roughness parameters). Errors of over 100% are found when values of dimple size or facet size are calculated directly from the scanning electron microscopy (SEM...
Abstract
The principal objective of quantitative fractography is to express the characteristics of features in the fracture surface in quantitative terms, such as the true area, length, size, spacing, orientation, and location. This article provides a detailed account of the development of more quantitative geometrical methods for characterizing nonplanar fracture surfaces. Prominent techniques for studying fracture surfaces are based on the projected images, stereoscopic viewing, and sectioning. The article provides information on various roughness and materials-related parameters for profiles and surfaces. The applications of quantitative fractography for striation spacings, precision matching, and crack path tortuosity are also discussed.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000604
EISBN: 978-1-62708-181-8
... , and 101 are in order of increasing amounts of strain. Note how cracks propagate through the graphite rather than around it as is the case for ductile iron (see Fig. 76 , 77 , 78 , 79 , Fig. 85 , and 86 ). SEM, all at 580× (R.C. Voigt and B. Pourlaidian, University of Kansas) Fig. 98 Fig...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of pearlitic malleable and ferritic malleable white irons, and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the fracture sequence, localized plastic deformation, and microcrack initiation and propagation of these irons.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 2024
DOI: 10.31399/asm.hb.v12.a0006848
EISBN: 978-1-62708-387-4
... that less regular FCG regions occur contiguously and intermittently with more regular ones, sometimes making QF measurements difficult.) Fig. 11 SEM and deep-focus optical fractography examples of changes in fatigue fracture surface orientations due to load history variations. (a) Changes...
Abstract
Quantitative fractography (QF) is the examination and characterization of fracture surfaces of failed or broken-open components and specimens. This article provides examples of the application of QF to evaluate real-life fatigue failures and also a comprehensive guideline chart for detecting and measuring fatigue striations and progression markings, with examples.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006944
EISBN: 978-1-62708-395-9
... that organic solvents can plasticize and swell polymers, thus reducing the T g as well as the resistance to flow ( Ref 39 ). Crazing can have numerous fracture surface features which can be seen in SEM fractography of polymers. One of the most interesting fracture features of crazing is the fibrils...
Abstract
The discussion on the fracture of solid materials, both metals and polymers, customarily begins with a presentation of the stress-strain behavior and of how various conditions such as temperature and strain-rate affect the mechanisms of deformation and fracture. This article describes crazing and fracture in polymeric materials, with a review of the behavior of the elastic modulus as a function of temperature or time parameters, emphasizing the importance of the viscoelastic nature of their deformation and fracture. The discussion covers the behavior of polymers under stress, provides information on ductile and brittle behaviors, and describes craze initiation in polymers and crack formation and fracture by crazing. Macroscopic permanent deformation of polymeric materials caused by shear-yielding and crazing, which eventually can result in fracture and failure, is also covered.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006776
EISBN: 978-1-62708-295-2
... of materials since the 1950s, and scanning electron microscopes (SEMs) have been commercially available since 1965 ( Ref 23 ). Today (2020), the SEM is standard equipment for any laboratory performing failure analysis and fractography. The SEM offers significantly superior resolution and depth of field...
Abstract
Fatigue failure of engineering components and structures results from progressive fracture caused by cyclic or fluctuating loads. Fatigue is an important potential cause of mechanical failure, because most engineering components or structures are or can be subjected to cyclic loads during their lifetime. This article focuses on fractography of fatigue. It provides an abbreviated summary of fatigue processes and mechanisms: fatigue crack initiation, fatigue crack propagation, and final fracture,. Characteristic fatigue fracture features that can be discerned visually or under low magnification are then described. Typical microscopic features observed on structural metals are presented subsequently, followed by a brief discussion on fatigue in polymers and polymer-matrix composites.
1