Skip Nav Destination
Close Modal
Search Results for
Rockwell hardness
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 97 Search Results for
Rockwell hardness
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004044
EISBN: 978-1-62708-185-6
... Abstract This article presents a comprehensive collection of tables that list Rockwell hardness and superficial hardness numbers for wrought aluminum products, wrought coppers, and cartridge brass. hardness number Rockwell hardness wrought aluminum wrought coppers Table 1...
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004043
EISBN: 978-1-62708-185-6
... − HRB ) (60–90 HRB, 110–192 HB) Stable alpha-beta titanium alloys HRC=0.078 HV+8.1 Table 2 Approximate Rockwell B hardness conversion numbers for nonaustenitic steels Rockwell Superficial Rockwell Vickers Knoop, 500 gf and over Brinell, 3000 kgf, 10 mm ball Tensile...
Abstract
Hardness conversions are empirical relationships that are defined by conversion tables limited to specific categories of materials. This article summarizes hardness conversion formulas for various materials in a table. It tabulates the approximate Rockwell B and Rockwell C hardness conversion numbers for nonaustenitic steels. The article lists the approximate equivalent hardness numbers for Brinell hardness numbers and Vickers hardness numbers for steel in tables. The tables are also outlined in a graphical form.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006289
EISBN: 978-1-62708-169-6
... conductivity values for various aluminum alloy tempers Alloy Temper Brinell hardness Rockwell hardness Typical conductivity B E H 15T Bare alloys 2014 O … 22 max 70 max 95 max … 43.5–51.5 T3 100 65 95 … 82 31.5–35 T4 100 65 95 … 82 31.5–34.5 T6 125 78 102...
Abstract
Heat treatment of aluminum alloys is assessed by various quality-assurance methods that include metallographic examination, hardness measurements, mechanical property tests, corrosion-resistance tests, and electrical conductivity testing. The use of hardness measurements in the quality assurance of heat treated aluminum products is effectively used in conjunction with the measurement of surface electrical conductivity. This article provides a detailed discussion of the error sources in eddy-current conductivity measurements. It also presents useful information on the variation of electrical conductivity of alloy 2024 samples as a function of aging time at different isothermal holding temperatures.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001243
EISBN: 978-1-62708-170-2
.... Rather, the as-plated brightness can serve as an indication of hardness. The hardness of chromium plate cannot be accurately determined by the common hardness testers, such as Brinell and Rockwell, because hard chrome is generally too thin for these tests. The indentation produced in these tests...
Abstract
Hard chromium plating is produced by electrodeposition from a solution containing chromic acid and a catalytic anion in proper proportion. This article presents the major uses of hard chromium plating, and focuses on the selection factors, plating solutions, solution and process control, equipment, surface preparation, and crack patterns and other characteristics of hard chromium plating. It offers recommendations for the design and use of plating racks, describes the problems encountered in hard chromium plating, and their corrective procedures. The article provides information on the removal of chromium plate from coated metals, recovery and disposal of wastes, and stopoff media for selective plating.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006761
EISBN: 978-1-62708-295-2
... Macroindentation hardness testing Rockwell hardness Hardness Need smooth surface finish, flat surface, and parallel sides Sample must fit within the machine and be balanced on the pedestal Brinell hardness Hardness Need smooth surface finish, flat surface, and parallel sides Sample must fit within the...
Abstract
Mechanical testing is an evaluative tool used by the failure analyst to collect data regarding the macro- and micromechanical properties of the materials being examined. This article provides information on a few important considerations regarding mechanical testing that the failure analyst must keep in mind. These considerations include the test location and orientation, the use of raw material certifications, the certifications potentially not representing the hardware, and the determination of valid test results. The article introduces the concepts of various mechanical testing techniques and discusses the advantages and limitations of each technique when used in failure analysis. The focus is on various types of static load testing, hardness testing, and impact testing. The testing types covered include uniaxial tension testing, uniaxial compression testing, bend testing, hardness testing, macroindentation hardness, microindentation hardness, and the impact toughness test.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003103
EISBN: 978-1-62708-199-3
... opposite end is cooling slowly in air, and intermediate positions along the specimen are cooling at intermediate rates, After the specimen has been quenched, parallel flats 180° apart are ground 0.015 in. (0.38 mm) deep on the cylindrical surface, Rockwell C hardness is measured at intervals of 1 16...
Abstract
Hardenability is usually the single most important factor in the selection of steel for heat-treated parts. The hardenability of steel is best assessed by studying the hardening response of the steel to cooling in a standardized configuration in which a variety of cooling rates can be easily and consistently reproduced from one test to another. These include the Jominy end-quench test, the carburized hardenability test, and the surface-area-center hardenability test. This article discusses the effects of varying carbon content as well as the influence of different alloying elements on hardenability of steels. The basic information needed before a steel with adequate hardenability can be specified as the as-quenched hardness required prior to tempering to final hardness that will produce the best stress-resisting microstructure; the depth below the surface to which this hardness must extend; and the quenching medium that should be used in hardening.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003152
EISBN: 978-1-62708-199-3
... strength and high in resistance to abrasion and cratering. It is used extensively for high-speed, light-duty finishing. The complex grade highest in cobalt content and in TaC is preferred for hot-work tools, in both cutting and shaping of metals. Hardness is typically measured on the Rockwell A scale...
Abstract
Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a ductile metal binder. Cermet refers to a composite of a ceramic material with a metallic binder. This article discusses the manufacture, composition, classifications, and physical and mechanical properties of cemented carbides. It describes the application of hard coatings to cemented carbides by physical or chemical vapor deposition (PVD or CVD). Tungsten carbide-cobalt alloys, submicron tungsten carbide-cobalt alloys, and alloys containing tungsten carbide, titanium carbide, and cobalt are used for machining applications. The article also provides an overview of cermets used in machining applications.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003082
EISBN: 978-1-62708-199-3
... (Rockwell C hardness range) For carbon and alloy steels in the annealed, normalized, and quenched-and-tempered conditions. Rockwell C hardness No., 150 kgf, HRC Vickers hardness No., HV Brinell hardness No. Knoop hardness No., 500 gf and over, HK Rockwell hardness No. Rockwell superficial...
Abstract
This article contains tables that present engineering data for the following metals and their alloys: aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, zinc, precious metals, permanent magnet materials, pure metals, rare earth metals, and actinide metals. Data presented include density, linear thermal expansion, thermal conductivity, electrical conductivity, resistivity, and approximate melting temperature. The tables also present approximate equivalent hardness numbers for austenitic steels, nonaustenitic steels, austenitic stainless steel sheet, wrought aluminum products, wrought copper, and cartridge brass. The article lists conversion factors classified according to the quantity/property of interest.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003241
EISBN: 978-1-62708-199-3
... considered the practical range. Rockwell hardness testing is the most widely used method for determining hardness. There are several reasons for this distinction. The Rockwell test is simple to perform and does not require highly skilled operators. By use of different loads and indenters, Rockwell...
Abstract
This article reviews the various types of mechanical testing methods, including hardness testing; tension testing; compression testing; dynamic fracture testing; fracture toughness testing; fatigue life testing; fatigue crack growth testing; and creep, stress-rupture, and stress-relaxation testing. Shear testing, torsion testing, and formability testing are also discussed. The discussion of tension testing includes information about stress-strain curves and the properties described by them.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003114
EISBN: 978-1-62708-199-3
... and wear resistance but lowers toughness. As indicated in Table 3 , the hardness of tool steel is most commonly measured and reported on the Rockwell C scale (HRC). Hot hardness, the retention of high hardness at elevated temperature, is an important property for tool steels used for machining...
Abstract
This article discusses the characteristics, composition limits, and classification of wrought tool steels, namely high-speed steels, hot-work steels, cold-work steels, shock-resisting steels, low-alloy special-purpose steels, mold steels, water-hardening steels, powder metallurgy tool steels, and precision-cast tool steels. It describes the effects of surface treatments on the basic properties of tool steels, including hardness, resistance to wear, deformation, and toughness. The article provides information on fabrication characteristics of tool steels, including machinability, grindability, weldability, and hardenability, and presents a short note on machining allowances.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006254
EISBN: 978-1-62708-169-6
... alloys and the relationship between hardness and mechanical properties of the alloys. The article discusses the effects of elements such as aluminum, zinc, manganese, rare earths, and yttrium, on precipitation hardening. It describes the types of heat treatment for magnesium alloys, including annealing...
Abstract
Magnesium alloys are used predominantly for high-pressure die-cast applications in which the use of a deliberate heat treatment is uncommon. This article provides information on the heat treatment designations for magnesium alloys. It describes the effects of grain size on magnesium alloys and the relationship between hardness and mechanical properties of the alloys. The article discusses the effects of elements such as aluminum, zinc, manganese, rare earths, and yttrium, on precipitation hardening. It describes the types of heat treatment for magnesium alloys, including annealing, stress relieving, solution treating and aging, and reheat treating. The article also discusses the preventive measures for the common problems encountered in heat treating magnesium alloys; and the evaluation of the effectiveness of heat treating procedures. In addition, it presents the processing steps involved in the heat treatment of magnesium alloys and in the prevention and control of magnesium fires.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003002
EISBN: 978-1-62708-200-6
... 2760–3445 400–500 0.21–0.27 0.4–0.5 Styrene-maleic anhydride (S/MA) 1.05–1.15 35–62 5–9 1.8–30 2275–3380 330–490 0.27–6.4 0.5–12 Material Hardness , Rockwell Deflection temperature under load (DTUL) Maximum service temperature (no load) Water absorption (ASTM D 570...
Abstract
This article is a comprehensive collection of engineering tables providing information on the mechanical properties of and the techniques for processing and characterizing polymeric materials, such as thermosets, thermoset-matrix unidirectional advanced composites, and unreinforced and carbon-and glass-reinforced engineering thermoplastics. Values are also provided for chemical resistance ratings for selected plastics and metals, and hardness of selected elastomers.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005324
EISBN: 978-1-62708-187-0
... ductile iron with an actual matrix hardness of Rockwell C 63 to 65 will indicate a hardness of 55 to 58. This effect presents no problem if it is recognized. The Brinell test is preferred for determining the hardness of ductile iron castings, and typical values for different matrix structures are listed...
Abstract
This article begins with a description of the classes and grades of ductile iron. It discusses the factors affecting the mechanical properties of ductile iron. The article reviews the hardness properties, tensile properties, shear and torsional properties, compressive properties, fatigue properties, fracture toughness, and physical properties of ductile iron and compares them with other cast irons to aid the designer in materials selection. It concludes with information on austempered ductile iron.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003057
EISBN: 978-1-62708-200-6
.... The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and...
Abstract
This article describes testing and characterization methods of ceramics for chemical analysis, phase analysis, microstructural analysis, macroscopic property characterization, strength and proof testing, thermophysical property testing, and nondestructive evaluation techniques. Chemical analysis is carried out by X-ray fluorescence spectrometry, atomic absorption spectrophotometry, and plasma-emission spectrophotometry. Phase analysis is done by X-ray diffraction, spectroscopic methods, thermal analysis, and quantitative analysis. Techniques used for microstructural analysis include reflected light microscopy using polarized light, scanning electron microscopy, transmission electron microscopy, energy dispersive analysis of X-rays, and wavelength dispersive analysis of X-rays. Macroscopic property characterization involves measurement of porosity, density, and surface area. The article describes testing methods such as room and high-temperature strength test methods, proof testing, fracture toughness measurement, and hardness and wear testing. It also explains methods for determining thermal expansion, thermal conductivity, heat capacity, and emissivity of ceramics and glass and measurement of these properties as a function of temperature.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0005697
EISBN: 978-1-62708-181-8
... gigapascal h hour H height HAZ heat-affected zone HB Brinell hardness hcp hexagonal close-packed HK Knoop hardness HR Rockwell hardness (requires scale designation, such as HRC for Rockwell C hardness) HSLA high-strength low-alloy (steel) HV Vickers...
Book
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.9781627081887
EISBN: 978-1-62708-188-7
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003107
EISBN: 978-1-62708-199-3
... flakes, because they disrupt the matrix to a lesser extent, are desired when maximum tensile properties and a fine, smooth surface finish are needed. When a wedge-shape bar with about 10° taper cast in a sand mold and sectioned near the center of its length, and Rockwell hardness determinations are...
Abstract
This article provides information on the classification, microstructure, castability and section sensitivity of gray iron. It describes properties of the test bar and provides a short note on fatigue limit in reversed bending. Although the ASTM size B test bar is the bar most commonly used for all gray irons from classes 20 to 60, ASTM A 48 provides a series of bar sizes, and the user can select the bar sizes that best approximates the cooling rate in the critical section of the casting.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.9781627082952
EISBN: 978-1-62708-295-2
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.9781627081757
EISBN: 978-1-62708-175-7
Book Chapter
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0005586
EISBN: 978-1-62708-170-2
... close-packed HCT high coiling temperature HDPE high-density polyethylene HERF high-energy-rate forming HIP hot isostatic pressing HK Knoop hardness hp horsepower HR Rockwell hardness (requires scale designation, such as HRC for Rockwell C hardness) HREM...