Skip Nav Destination
Close Modal
Search Results for
Richardson-Jeffes diagram
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-7 of 7 Search Results for
Richardson-Jeffes diagram
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 January 2003
Fig. 3 Richardson-Jeffes diagram showing standard Gibbs free energy of formation as a function of temperature for metal oxide systems. Source: Ref 7
More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003588
EISBN: 978-1-62708-182-5
... presents crystal structures and thermal properties of pure metals and oxides in a tabular form. The free energy of reaction, which describes the oxidation process of a pure divalent metal, is presented. The article illustrates the Richardson-Jeffes diagram, which is used in the determination...
Abstract
Metals can react chemically with oxygen when exposed to air. Essential to an understanding of the gaseous corrosion of a metal are the crystal structure and the molar volume of the metal on which the oxide builds, both of which may affect growth stresses in the oxide. This article presents crystal structures and thermal properties of pure metals and oxides in a tabular form. The free energy of reaction, which describes the oxidation process of a pure divalent metal, is presented. The article illustrates the Richardson-Jeffes diagram, which is used in the determination of the standard Gibbs energy change of formation of oxides and the corresponding dissociation pressures of the oxides as a function of temperature. It demonstrates the Kellogg diagram which shows stability range in more complicated multioxidant systems. The article explains the determination of partial pressures of gas mixtures and partial pressures of volatile oxidation products.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006087
EISBN: 978-1-62708-175-7
..., it is ground into powder in ball or hammer mills under a protective atmosphere. References References 1. Richardson F.D. and Jeffes J.H.E. , The Thermodynamics of Substances of Interest in Iron and Steelmaking from 0 °C to 2400 °C , J. Iron Steel Inst. , Vol 160 , 1948 , p 261 2...
Abstract
This article provides a discussion on the process descriptions, processing conditions, and processing variables of the most common chemical methods for metal powder production. These methods include oxide reduction, precipitation from solution, and thermal decomposition. Methods such as precipitation from salt solution and gas, chemical embrittlement, hydride decomposition, and thermite reactions are also discussed. The article also discusses the methods used to produce powders electrolytically and the types of metal powders produced. The physical and chemical characteristics of these powders are also reviewed.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006971
EISBN: 978-1-62708-439-0
Abstract
This article discusses several alternative mechanical test approaches that can be applied to additive manufacturing (AM) materials, both for smaller-scale assessments and for specimens that have been extracted from an AM component. This includes small punch testing, shear punch testing, and small ring testing.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003837
EISBN: 978-1-62708-183-2
...” in ASM Handbook , Volume 13A, 2003. The standard free energies of formation (Δ G °) of oxides and sulfides as a function of temperatures and the corresponding dissociation pressures of the oxides and sulfides are conveniently summarized in the form of Ellingham/Richardson diagrams, as illustrated in Fig...
Abstract
This article reviews the corrosion behavior of intermetallics for the modeling of the corrosion processes and for devising a strategy to create corrosion protective systems through alloy and coating design. Thermodynamic principles in the context of high-temperature corrosion and information on oxidation; sulfidation; hot corrosion of NiAl-, FeAl-, and TiAl-based intermetallics; and silicides are included. The article explores the thermodynamic consideration, ordering influencing kinetics, stress-cracking corrosion, and hydrogen embrittlement of aqueous corrosion. It also explains the practical issues dealing with the corrosion problems.
Book Chapter
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003718
EISBN: 978-1-62708-182-5
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.9781627081825
EISBN: 978-1-62708-182-5