Skip Nav Destination
Close Modal
By
ASM International Committee on Nondestructive Testing of Composites, R.H. Bossi, D.E. Bowles, Y. Bar-Cohen, T.E. Drake ...
Search Results for
Rayleigh wave defect detection
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 45 Search Results for
Rayleigh wave defect detection
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006461
EISBN: 978-1-62708-190-0
... the methods for using Rayleigh waves for defect detection and materials characterization, alongside nonlinear ultrasonic inspection and surface acoustic wave (SAW) microscopy. The article concludes with information on the standards that use Rayleigh waves for nondestructive evaluation (NDE) of different...
Abstract
This article provides an overview of the characteristics of Rayleigh waves plus methods for generation and detection of waves, including using piezoelectric transducers or noncontact techniques such as lasers, electromagnetic acoustic transducers, or air-coupled ultrasonics. It reviews the methods for using Rayleigh waves for defect detection and materials characterization, alongside nonlinear ultrasonic inspection and surface acoustic wave (SAW) microscopy. The article concludes with information on the standards that use Rayleigh waves for nondestructive evaluation (NDE) of different structures.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006446
EISBN: 978-1-62708-190-0
... of longitudinal wave and Rayleigh surface acoustic waves. It concludes with information on the applications of nonlinear ultrasonics. nonlinear ultrasonic nondestructive examination nonlinear ultrasonic materials characterization flaw-detection longitudinal wave Rayleigh surface acoustic waves...
Abstract
Nonlinear ultrasonic nondestructive examination (NDE) techniques are based on nonlinear interaction of ultrasonic waves with the material to be characterized and defects to be detected. This article introduces the basic principles of nonlinear material-wave interaction, the origin of intrinsic nonlinearity in intact solids, and the main mechanisms of excess nonlinearity in damaged metals. It describes the measurement methods for nonlinear ultrasonic materials characterization and flaw-detection. The article schematically illustrates the instrumentation used for measurements of longitudinal wave and Rayleigh surface acoustic waves. It concludes with information on the applications of nonlinear ultrasonics.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006469
EISBN: 978-1-62708-190-0
... Abstract This article considers the two primary methods used for ultrasonic inspection: pulse-echo and the transmission methods. Pulse-echo inspection can be accomplished with longitudinal, shear, surface (Rayleigh), or Lamb (plate) waves using a diverse range of transducers. The article...
Abstract
This article considers the two primary methods used for ultrasonic inspection: pulse-echo and the transmission methods. Pulse-echo inspection can be accomplished with longitudinal, shear, surface (Rayleigh), or Lamb (plate) waves using a diverse range of transducers. The article discusses the principles of each of these inspection methods. It describes the applications and the basic data formats for single-element transducer-based systems, including A-scans, B-scans, and C-scans. The article provides information on electronic equipment used for ultrasonic inspection. It also describes how specific material conditions produce and modify A-scan indications. The article provides information on the controls and their functions for the display unit of the electronic equipment. It describes the techniques used for the identification and characterization of flaws, namely, surface (Rayleigh) wave and ultrasonic polar scan techniques.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006470
EISBN: 978-1-62708-190-0
... illustrated in Fig. 6 . These waves, and their applications, are discussed in the article “Rayleigh Wave Nondestructive Evaluation for Defect Detection and Materials Characterization” in this Volume. Fig. 6 Diagram of surface (Rayleigh) waves propagating at the surface of a metal along a metal-air...
Abstract
Ultrasonic inspection is a family of nondestructive methods in which beams of high-frequency mechanical waves are introduced into materials, using transducers, for the detection and characterization of both surface and subsurface anomalies and flaws in the material. This article describes the basic equipment in ultrasonic inspection systems, and lists the advantages and disadvantages of these systems. It discusses the applications of ultrasonic inspection and also the general characteristics of ultrasonic waves in terms of wave propagation, longitudinal waves, transverse waves, surface waves, and lamb waves. The article reviews the major variables in ultrasonic inspection, including frequency, acoustic impedance, angle of incidence, and beam intensity. It discusses the attenuation of ultrasonic beams and provides information on the pulse-echo and transmission methods for implementing ultrasonic inspection.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003236
EISBN: 978-1-62708-199-3
... be transmitted. The same is true of a liquid, unless it is particularly viscous or is present as a very thin layer. Surface Waves Surface waves (Rayleigh waves) are another type of ultrasonic waves used in the inspection of metals. These waves travel along the flat and curved surfaces of relatively thick...
Abstract
Ultrasonic inspection is a nondestructive method in which beams of high-frequency acoustic energy are introduced into a material to detect surface and subsurface flaws, to measure the thickness of the material, and to measure the distance to a flaw. This article provides a detailed account of ultrasonic flaw detectors, including ultrasonic transducers and types of search units and couplants. The article describes pulse-echo and transmission inspection methods and data interpretation. The general characteristics of ultrasonic waves and the factors influencing ultrasonic inspection are also addressed. The article concludes with a review of the advantages and disadvantages of ultrasonic inspection compared with other methods applications of the technique.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006460
EISBN: 978-1-62708-190-0
... manner. When the laser beam is focused to a small circular spot, a surface wave with a cylindrical symmetry is emitted from this spot. Its amplitude has a maximum when the laser pulse duration is approximately D / V R , where D is the spot diameter and V R the Rayleigh velocity of the material...
Abstract
Laser-ultrasonics is a particular implementation of ultrasonic nondestructive inspection in which ultrasound is generated and detected by lasers. This article discusses the various mechanisms that ensure ultrasound generation and explains the possibility to get the equivalent of phase-array by numerical processing of an array of previously acquired laser-ultrasonic signals. The article describes the ultrasound generation by thermoelastic mechanism and ablation or vaporization. It illustrates the principle of optical detection of ultrasound with confocal Fabry-Perot interferometer and photorefractive two-wave mixing interferometer. The article concludes with information on the industrial applications of laser-ultrasonics, including thickness measurement, flaw detection, and material characterization.
Book Chapter
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006475
EISBN: 978-1-62708-190-0
... for values of the ratio of the circumference to the wavelength less than 0.3, and scattering varies as the fourth power of this ratio. Ratios below 0.3 lie in what is known as the Rayleigh region. Mathematically, the dielectric constant and loss factor are expressed in combined forms as a complex...
Abstract
Electromagnetic signals at microwave and millimeter-wave frequencies are well suited for inspecting dielectric materials and composite structures in many critical applications. This article presents a partial list of reported nondestructive testing (NDT) application areas for microwaves. It discusses the advantages and limitations of inspection with microwaves. The article discusses the physical principles, including reflection and refraction, absorption and dispersion, scattering, and standing waves. It provides a discussion on terahertz (THz) imaging for nondestructive evaluation (NDE). The article concludes with information on ground-penetration radar (GPR) that uses electromagnetic radiation and detects the reflected signals from subsurface structures.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003436
EISBN: 978-1-62708-195-5
... macrocracks, and voids in composites structures. The ultrasonic method itself uses longitudinal, shear, Lamb, Rayleigh, or guided waves for various measurements on composite materials. Wave parameters, including acoustic attenuation and speed, can be used to determine materials properties and characteristics...
Abstract
This article introduces the principal methodologies and some technologies that are being applied for nondestructive evaluation of composite materials. These include ultrasonic testing (UT), air-coupled UT, laser UT, ultrasonic spectroscopy, leaky lamb wave method, acousto-ultrasonics, radiography, X-ray computed tomography, thermography, low-frequency vibration methods, acoustic emission, eddy current testing, optical holography, and shearography. The article presents some examples are for fiber-reinforced polymer-matrix composites. Many of the techniques have general applicability to other types of composites such as metal-matrix composites and ceramic-matrix composites.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006478
EISBN: 978-1-62708-190-0
..., matrix macrocracks, and voids in composite structures. The ultrasonic method itself uses longitudinal, shear, Lamb, Rayleigh, or guided waves for various measurements on composite materials. Wave parameters, including acoustic attenuation and speed, can be used to determine materials properties...
Abstract
This article introduces the principal methodologies and some advanced technologies that are being applied for nondestructive evaluation (NDE) of fiber-reinforced polymer-matrix composites. These include acoustic emission, ultrasonic, eddy-current, computed tomography, electromagnetic acoustic transducer, radiography, thermography, and low-frequency vibration methods. The article also provides information on NDE methods commonly used for metal-matrix composites.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006458
EISBN: 978-1-62708-190-0
... be used in the pitch-catch configuration, where one MC is the T-coil and the other the R-coil; this configuration is commonly used for generating bulk shear-vertical waves for defect detection and sizing. If L S is approximately one plate thickness, these two MCs may be used for thickness gaging...
Abstract
This article describes the basic features of electromagnetic acoustic transducers (EMATs) and discusses their existing and some potential uses within the field of ultrasonic nondestructive evaluation (UNDE). It provides sufficient basic and practical information to make an informed choice when considering the transducer to be used for any particular UNDE application. The article describes how different types of EMATs operate and presents their fundamental and some practical limitations. It summarizes the representative literature for electromagnetic acoustic transducer UNDE applications. Some successful uses of EMATs are mentioned to illustrate the depth, range, and potential of commercial EMAT applications. The article concludes with information on the commercial sources for EMAT systems and components.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.9781627081900
EISBN: 978-1-62708-190-0
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006466
EISBN: 978-1-62708-190-0
... microscope can image several millimeters or more into most samples and is ideal for analyzing at a specific depth. Because of a very large top surface reflection from the sample, this type of microscope is not effective in the zone immediately below the surface unless the Rayleigh wave mode to scan near...
Abstract
This article discusses the fundamentals and operating principles of the following acoustic microscopy methods: scanning laser acoustic microscopy, C-mode scanning acoustic microscopy, and scanning acoustic microscopy. It describes the applications of acoustic microscopy for detecting defects in metals, ceramics, glasses, polymers, and composites with examples.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006473
EISBN: 978-1-62708-190-0
... fitness for service. Increasing implementation of advanced-life and retirement-for-cause strategies has driven research to assess defect type and size. These trends have called for more comprehensive defect characterization and more attention on detection reliability, imaging, and sizing, together...
Abstract
This article discusses the inspection/reference standards that are absolutely critical for proper application of ultrasonic inspection systems. Many of the standards and specifications for ultrasonic inspection require the use of standard reference blocks. The article lists the variables that should be considered when selecting standard reference blocks and describes the three types of standard blocks ordinarily used for calibration or reference: area-amplitude blocks, distance-amplitude blocks, and blocks of the type sanctioned by the International Institute of Welding. It reviews the determination of area-amplitude and distance-amplitude curves of a straight-beam pulse-echo ultrasonic inspection system. The article discusses the three principal conventional manual ultrasonic sizing techniques: 6 dB drop technique, maximum-amplitude technique, and 20 dB drop technique. It provides information on the dimension-measurement applications of ultrasonic inspection methods.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006936
EISBN: 978-1-62708-395-9
... of the material being inspected. This method is seldom used on composite materials because of the material anisotropy and because defects of interest tend to be parallel to the inspection surface and therefore most easily detected with a normal incidence beam. Through-transmission Similar to the pitch...
Abstract
Of the many different nondestructive evaluation (NDE) techniques, ultrasonic inspection continues to be the leading nondestructive method for inspecting composite materials, because measurements can be quantitative and the typical defect geometries and orientations lend themselves to detection and characterization. This article focuses on the three common methods for ultrasonic nondestructive inspection of plastics, namely pitch-catch, through-transmission, and pulse-echo, as well as the three basic types of ultrasonic NDE scans: the A-scan, B-scan, and C-scan. The discussion includes the linear and phased array systems that are sometimes used for large-scale inspection tasks to reduce scan times, the various gating and image processing techniques, and how ultrasonic data are interpreted and presented. A brief section on future trends in ultrasonic inspection is presented at the end of the article.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005857
EISBN: 978-1-62708-167-2
... that residual induction, Br , in a weak field (Rayleigh region) is determined by the Rayleigh coefficient, ν, which is much higher for the pearlite-ferrite structure than for martensite: B r = ν H m 2 / 2 This was confirmed in a recent investigation by Nakagawa et al. ( Ref 10...
Abstract
Inspection involves two types of testing, namely, destructive and non-destructive. This article provides an overview of the various inspection plans, such as first-article inspection and periodic tests done by destructive metallurgical testing and the final inspection done by the application of non-destructive technology. It describes the processes involved in destructive methods, such as surface hardness measurement, induction hardening pattern and heat-affected zone inspection, and the examination of microstructure before and after induction hardening. It also discusses non-destructive evaluation techniques for defect detection and microstructure characterization as well as non-destructive evaluation for real-time monitoring of induction process.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006471
EISBN: 978-1-62708-190-0
... is selected for each specific application. The surface (Rayleigh) wave search unit is an angle-beam unit insofar as it uses a wedge to position the crystal at an angle to the surface of the testpiece. It generates surface waves by mode conversion, where the wedge angle is chosen so that the shear wave...
Abstract
This article discusses the advantages, disadvantages, applications, and selection criteria of various technologies and transduction modalities that can generate and detect ultrasonic waves. These include piezoelectric transducers, electromagnetic acoustic transducers (EMATs), laser ultrasound phased array transducers, magnetostriction transducers, and couplants. The article discusses four basic types of search units with piezoelectric transducers. These include the straight-beam contact type, the angle-beam contact type, the dual-element contact type, and the immersion type. The article concludes with information on immersion or contact type focused search units.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006449
EISBN: 978-1-62708-190-0
... scans in a single pass ( Ref 2 , 5 ), which saves on time and equipment space requirements. Combination systems typically include multiple orientations of transducers, receivers, probes, and sensors so they can detect defects in multiple orientations (longitudinal, transverse, oblique) and also provide...
Abstract
This article provides information on the application of nondestructive examination (NDE) technologies to tube and pipe products. These include modeling and simulation methods, eddy-current methods, magnetic methods, acoustic methods, and physical methods. A summary of nondestructive examination methods based on flaw type and product stage is presented in a table. The article also discusses in-service inspection of tubular products and presents an example that illustrates the importance of nondestructive testing (NDT) for welds in austenitic stainless steel tubing.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006400
EISBN: 978-1-62708-192-4
... before the defect in the surface forms, because it propagates on the surface of the material as Rayleigh waves ( Ref 2 ), and the displacement of these waves is measured by AE sensors that are almost always a piezoelectric crystal, commonly made from a ceramic. On the other hand, vibration analysis...
Abstract
This article introduces the concept of condition monitoring (CM) and summarizes various techniques used for CM across the industrial sectors. The techniques include visual inspection, performance monitoring, vibration condition monitoring, vibration condition monitoring, lubricant oil analysis, acoustic emission testing, temperature monitoring, motor current signature analysis, and ultrasound emission. The article describes the evolution of condition-based maintenance in CM. It also describes the basics of integrated vehicle health management, a capability that enables a number of maintenance philosophies. The article concludes with a discussion on various condition monitoring in industrial sectors, including condition-monitoring techniques in nuclear power plants, road condition monitoring, and condition monitoring in wind turbines.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006992
EISBN: 978-1-62708-439-0
... and a subsequent breakdown of the melt pool due to Rayleigh instabilities ( Ref 14 ). However, these defects can be easily removed simply by injecting more energy into the melt pool by either increasing beam power or decreasing scanning speed. Consequently, balling is rarely observed in commercial PBF systems when...
Abstract
The use of additive manufacturing (AM) is increasing for high-value, critical applications across a range of disparate industries. This article presents a discussion of high-valued engineering components predominantly used in the aerospace and medical industries. Applications involving metal AM, including methods to identify pores and voids in AM materials, are the focus. The article reviews flaw formation in laser-based powder-bed fusion, summarizes sensors used for in situ process monitoring, and outlines advances made with in situ process-monitoring data to detect AM process flaws. It reviews investigations of ML-based strategies, identifies challenges and research opportunities, and presents strategies for assessing anomaly detection performance.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001763
EISBN: 978-1-62708-178-8
... of spheres of radius R , which are separated by a distance r . A simple geometric argument yields: (Eq 10) γ ( r ) = 1 − ( 3 r ) ( 4 R ) + 1 16 ( r R ) 3 which if substituted into Eq 7 provides the classic Rayleigh equation for scattering from...
Abstract
This article presents the experimental and theoretical aspects of small-angle scattering, and discusses specific applications used in the characterization of metals, glasses, polymers, and ceramics. The basic methods of collimating x-rays, the cause of smearing from a line source, desmearing parameters, and the types of scattering curves are illustrated.
1