1-20 of 28 Search Results for

Rankine cycle systems

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006825
EISBN: 978-1-62708-329-4
...Abstract Abstract Failures in boilers and other equipment taking place in power plants that use steam as the working fluid are discussed in this article. The discussion is mainly concerned with failures in Rankine cycle systems that use fossil fuels as the primary heat source. The general...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004150
EISBN: 978-1-62708-184-9
... temperature at the turbine inlet. Achieving this results in a need for a different suite of materials for the high-temperature parts of the system; this is particularly true for the Rankine cycle machines, since the Brayton cycle turbines used for power generation have inlet temperatures at the power turbine...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005790
EISBN: 978-1-62708-165-8
... additions on the iron-carbon system ( Ref 2 ). Considering a chromium level of 12 wt%, pertinent to a martensitic 410 stainless steel, the diagram indicates that no austenite should form until approximately 810 °C (1490 °F). In this context, handbook recommendations for the process annealing of 410...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004133
EISBN: 978-1-62708-184-9
... but with a sliding pressure capability. The Rankine cycle, in terms of temperature and entropy, is shown in Fig. 3 for a subcritical system and in Fig. 4 for a SC system. In these figures, the critical temperature is at the maximum in the saturated-liquid and -vapor curves. Under the saturated lines is a wet...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.9781627081832
EISBN: 978-1-62708-183-2
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.9781627081849
EISBN: 978-1-62708-184-9
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001816
EISBN: 978-1-62708-180-1
... concerned with failures in Rankine-cycle systems that use fossil fuels or a nuclear reactor as the primary heat source, although many of the principles that apply to Rankine-cycle systems also apply to systems using other steam cycles or to systems using working fluids other than steam. It is important...
Book Chapter

Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005448
EISBN: 978-1-62708-196-2
... standard open Brayton cycle Process Efficiency The following equations give the efficiencies of various processes for steady-state conditions. Nozzle efficiency, η, is given by: η nozzle = V 2 2 V ′ 2 2 for a system shown in Fig. 15 , where V ′ 2 is the ideal...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006428
EISBN: 978-1-62708-192-4
... set of challenges when it comes to managing friction and wear issues. Gas and steam turbines are called the power island in an overall complex thermal power plant system, that comprise of stand-alone gas turbines and generators coupled together by a common shaft for a simple Brayton cycle machine...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002354
EISBN: 978-1-62708-193-1
... and strain ε, but rather to a hysteresis loop for each loading cycle. Figure 2 illustrates the way in which the courses of ε versus time t and σ versus t are combined. The example considered represents a fatigue experiment in which the test system forces the sample to follow a triangular signal...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004124
EISBN: 978-1-62708-184-9
... is on the outside, and the boiler is usually used without superheat. In water tube boilers, the water is on the inside of the tubes and the hot gases are on the outside. Only water tube boilers can be used in large installations. The conventional steam cycle used in larger water tube boilers is the Rankine cycle...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005749
EISBN: 978-1-62708-171-9
...) ATCS advanced thermal coating system atm atmosphere (pressure) AVEM Association of Vacuum Equipment Manufacturers AVS American Vacuum Society AWG American wire gage AWS American Welding Society BABS British Association for Brazing and Soldering bcc body...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
...Abstract Abstract The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003594
EISBN: 978-1-62708-182-5
... metals can also be used as two-phase working fluids in Rankine cycle power conversion devices (molten cesium or potassium) and in heat pipes (potassium, lithium, sodium, sodium-potassium). Because of their high thermal conductivities, sodium-potassium alloys, which can be any of a wide range of sodium...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005873
EISBN: 978-1-62708-167-2
... temperature for the specified amount of time. Tempering of alloy steels may require appreciably longer times and multiple tempering cycles. Induction tempering also is a proven method with several operational advantages, such as manufacturing flexibility, reduced tempering time, single part processing...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002366
EISBN: 978-1-62708-193-1
... and stage II normal stress-dominated growth, along with some observations regarding the influence of combined stress state on the propagation of small cracks. The article discusses the differences between low-cycle fatigue and high-cycle fatigue (HCF) behaviors. Several other features of multiaxial fatigue...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003196
EISBN: 978-1-62708-199-3
... by the Larson-Miller equation: Thermal effect = T ( log   t + 20 ) ( 10 − 3 ) where T is temperature (Rankin) and t is hours. It is evident in Fig. 1 that similar relief of residual stresses can be achieved by holding a component for longer periods of time at a lower...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... The efficiency of a power-generation plant is governed by a modified Rankine steam cycle, where thermodynamic efficiency increases with increasing temperature and pressure of the superheated steam entering the turbine. It is possible to further increase the mean temperature of the heat addition by taking back...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.9781627081825
EISBN: 978-1-62708-182-5