Skip Nav Destination
Close Modal
Search Results for
Raman spectroscopy
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 54 Search Results for
Raman spectroscopy
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006685
EISBN: 978-1-62708-213-6
.... Source: Ref 5 Fig. 6 Optical scheme of MOLE instrument. Source: Ref 8 Abstract Abstract This article introduces the principles of Raman spectroscopy and the representative materials characterization applications to which Raman spectroscopy has been applied. A discussion on light...
Abstract
This article introduces the principles of Raman spectroscopy and the representative materials characterization applications to which Raman spectroscopy has been applied. A discussion on light-scattering fundamentals and a description of the experimental aspects of the technique are included. Emphasis is placed on the different instrument approaches that have been developed for performing Raman analyses on various materials. The applications presented reflect the breadth of materials characterization uses for Raman spectroscopy and highlight the analysis of bulk material and of surface and near-surface species.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001736
EISBN: 978-1-62708-178-8
... processes. Fig. 6 Optical scheme of MOLE instrument. Source: Ref 8 Abstract Abstract This article introduces the principles of Raman spectroscopy and the representative materials characterization applications to which Raman spectroscopy has been applied. It includes a discussion...
Abstract
This article introduces the principles of Raman spectroscopy and the representative materials characterization applications to which Raman spectroscopy has been applied. It includes a discussion of light-scattering fundamentals and a description of the experimental aspects of the technique. Emphasis has been placed on the different instrument approaches that have been developed for performing Raman analyses on various materials. The applications presented in the article reflect the breadth of materials characterization uses for Raman spectroscopy and highlight the analysis of bulk material and of surface and near-surface species.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003710
EISBN: 978-1-62708-182-5
... spectroscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy, ion scattering spectroscopy, reflectance Fourier transform infrared absorption spectroscopy, Raman and surface enhanced Raman spectroscopy, and extended X-ray absorption fine structure analysis. corrosion corrosion inhibition...
Abstract
This article describes the analytical methods for analyzing surfaces for corrosion and corrosion inhibition processes as well as failure analysis based on surface structure and chemical identity and composition. The principles and applications of the surface-structure analysis techniques, namely, optical microscopy, scanning electron microscopy, scanning tunneling microscopy, and atomic force microscopy, are reviewed. The article discusses the principles and applications of chemical identity and composition analysis techniques. These techniques include the energy dispersive X-ray spectroscopy, Auger electron spectroscopy, X-ray photoelectron spectroscopy, ion scattering spectroscopy, reflectance Fourier transform infrared absorption spectroscopy, Raman and surface enhanced Raman spectroscopy, and extended X-ray absorption fine structure analysis.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005685
EISBN: 978-1-62708-198-6
.... These methods include light microscopy, scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. atomic force...
Abstract
This article focuses on the modes of operation, physical basis, sample requirements, properties characterized, advantages, and limitations of the characterization methods used to evaluate the physical morphology and chemical properties of component surfaces for medical devices. These methods include light microscopy, scanning electron microscopy, atomic force microscopy, energy-dispersive X-ray spectroscopy, Auger electron spectroscopy, secondary ion mass spectrometry, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006012
EISBN: 978-1-62708-172-6
... on the availability of analytical and imaging techniques such as Raman spectroscopy, scanning and transmission electron microscopy, atomic force microscopy, and scanning tunneling microscopy. References References 1. Tator K. , Nanotechnology: The Future of Coatings—Parts 1 and 2 , Mater. Perform...
Abstract
Nanotechnology and smart-coating technologies have been reported to show great promise for improved performance in critical areas such as corrosion resistance, durability, and conductivity. This article exemplifies nanofilms and nanomaterials used in coatings applications, including carbon nanotubes, silica, metals/metal oxides, ceramics, clays, buckyballs, graphene, polymers, titanium dioxide, and waxes. These can be produced by a variety of methods, including chemical vapor deposition, plasma arcing, electrodeposition, sol-gel synthesis, and ball milling. The application of nanotechnology and the development of smart coatings have been dependent largely on the availability of analytical and imaging techniques such as Raman spectroscopy, scanning and transmission electron microscopy, atomic force microscopy, and scanning tunneling microscopy.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006652
EISBN: 978-1-62708-213-6
... metallography; RS, Raman spectroscopy; SAXS, small-angle x-ray scattering; SEM, scanning electron microscopy; SIMS, secondary ion mass spectroscopy; TEM, transmission electron microscopy; UV/VIS, ultraviolet/visible absorption spectroscopy; XPS, x-ray photoelectron spectroscopy; XRD, x-ray diffraction; XRS, x...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006759
EISBN: 978-1-62708-295-2
... Surface Chemical Analysis Fourier Transform Infrared and Raman Spectroscopy Characterization Thermal Analysis as a Tool in Chemical Analysis X-Ray Diffraction for Compositional Analysis of Crystalline Materials Advancements in silicon drift detector technology allow for real-time or near...
Abstract
Chemical analysis is a critical part of any failure investigation. With the right planning and proper analytical equipment, a myriad of information can be obtained from a sample. This article presents a high-level introduction to techniques often used for chemical analysis during failure analysis. It describes the general considerations for bulk and microscale chemical analysis in failure analysis, the most effective techniques to use for organic or inorganic materials, and examples of using these techniques. The article discusses the processes involved in the chemical analysis of nonmetallics. Advances in chemical analysis methods for failure analysis are also covered.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006670
EISBN: 978-1-62708-213-6
...; STM: scanning tunneling microscopy; SPM: scanning probe microscopy; RS: Raman spectroscopy Segregation ratios of impurities in silicon. A smaller ratio indicates that a solid solidifying from a melt will contain less of the indicated species; a higher ratio indicates that it will contain more...
Abstract
This article introduces various techniques commonly used in the characterization of semiconductors, namely single-crystal, polycrystalline, amorphous, oxide, organic, and low-dimensional semiconductors and semiconductor devices. The discussion covers material classification, fabrication methods, sample preparation, bulk/elemental characterization methods, microstructural characterization methods, surface characterization methods, and electronic characterization methods.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006434
EISBN: 978-1-62708-192-4
... in atmospheres containing water vapor. This is done for burnished and bonded coatings by incorporating powders of other materials with MoS 2 during formulation or deposition ( Ref 31 , 32 , 33 , 34 ). Studies were conducted using Raman spectroscopy ( Ref 35 ) and other structure and surface analysis...
Abstract
Solid lubricants consist of materials placed at the interface between moving bodies to mitigate friction and wear. This article begins with a historical overview of solid lubricants and discuses the characteristics and fundamental aspects of solid lubricants. It describes the material categories of solid lubricant coatings, including graphite, graphite fluoride, transition metal dichalcogenides, diamond-like-carbon, polymeric materials, and metallic films. The article presents a description of deposition methods from the simplest processes involving burnishing and impingement in open air to modern vacuum-based methods for solid lubricants. It concludes with a discussion on metrics that can be used to qualify solid lubricants in high-consequence applications.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0005693
EISBN: 978-1-62708-178-8
... SANS small-angle neutron scattering SAM scanning Auger microscopy SAXS small-angle x-ray scattering SEM scanning electron microscopy SERS surface-enhanced Raman spectroscopy SFC supercritical fluid chromatography SIMS secondary ion mass spectroscopy...
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006678
EISBN: 978-1-62708-213-6
... … … … … … … … • • … … … … … • Raman spectroscopy N D, • D,• … D,• D,• D,• • • S • • … • … Scanning electron microscopy … … … … … … … … • … N N … … • Secondary ion mass spectroscopy • … S • • N … … • • • • • N N,S Small-angle x-ray scattering...
Abstract
This article briefly discusses popular techniques for metals characterization. It begins with a description of the most common techniques for determining chemical composition of metals, namely X-ray fluorescence, optical emission spectroscopy, inductively coupled plasma optical emission spectroscopy, high-temperature combustion, and inert gas fusion. This is followed by a section on techniques for determining the atomic structure of crystals, namely X-ray diffraction, neutron diffraction, and electron diffraction. Types of electron microscopies most commonly used for microstructural analysis of metals, such as scanning electron microscopy, electron probe microanalysis, and transmission electron microscopy, are then reviewed. The article contains tables listing analytical methods used for characterization of metals and alloys and surface analysis techniques. It ends by discussing the objective of metallography.
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.9781627081832
EISBN: 978-1-62708-183-2
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006671
EISBN: 978-1-62708-213-6
... ● ● ● ● … … S ● ● … … … Optical emission spectroscopy ● … … ● ● ● ● … … ● ● ● … … … Optical metallography … … … … … … ● ● … … … … … … ● Rutherford backscattering spectrometry ● … … ● ● ● … … ● ● S S … … … Raman spectroscopy S S … S S S S S...
Abstract
The characterization, testing, and nondestructive evaluation of ceramics and glasses are vital to manufacturing control, property improvement, failure prevention, and quality assurance. This article provides a broad overview of characterization methods and their relationship to property control, both in the production and use of ceramics and glasses. Important aspects covered include the means for characterizing ceramics and glasses, the corresponding rationale behind them, and relationship of chemistry, phases, and microconstituents to engineering properties. The article also describes the effects that the structure of raw ceramic materials and green products and processing parameters have on the ultimate structure and properties of the processed piece. The effects that trace chemistry and processing parameters have on glass properties are discussed. The article describes mechanical tests and failure analysis techniques used for ceramics.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006377
EISBN: 978-1-62708-192-4
... Raman spectroscopy, it was determined that humidity, for example, surface water, does not play a role in the oxidation of MoS 2 ( Ref 23 ). In addition, this study showed that localized heating/surface chemistry can occur through rapid oxidation when using a high-power 632.8 nm laser, and this laser...
Abstract
Transition metal dichalcogenides (TMD) are solid lubricant materials, specifically, intrinsic solid lubricants, whose crystal structure facilitates interfacial sliding/shear to achieve low friction and wear in sliding contacts and low torque in rolling contacts. This article provides information on sliding friction and wear behavior of unbonded, bonded, and vapor-deposited pure and composite MoS 2 and WS 2 coatings. It discusses the rolling-torque behavior and applications of vapor-deposited pure and composite MoS 2 and WS 2 coatings. The article concludes with information on various forms of TMD lubrication, namely, oils, greases, microparticle and nanoparticle additives.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006662
EISBN: 978-1-62708-213-6
... of the Society of Photo-Optical Instrumentation Engineers , Vol 191 , Vannasse G.A. , Ed., Society of Photo-Optical Instrumentation Engineers , Bellingham, WA , 1979 15. Griffiths P.R. , in Advances in Infrared and Raman Spectroscopy , Vol 10 , Clark R.J.H. and Hester R.E. , Ed...
Abstract
Infrared (IR) spectra have been produced by transmission, that is, transmitting light through the sample, measuring the light intensity at the detector, and comparing it to the intensity obtained with no sample in the beam, all as a function of the infrared wavelength. This article discusses the sampling techniques and applications of IR spectra as well as the molecular structure information it can provide. The discussion begins with a description of the general principle of IR spectroscopy. This is followed by a section on commercial IR instruments. Sampling techniques and accessories necessary in obtaining the infrared spectrum of a material are then discussed. The article presents various techniques and methods involved in IR qualitative analysis and quantitative analysis. It ends with a few examples of the applications of IR spectroscopy.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001735
EISBN: 978-1-62708-178-8
... , Bellingham, WA , 1979 13. Griffiths P.R. , in Advances in Infrared and Raman Spectroscopy , Vol 10 , Clark R.J.H. and Hester R.E. , Ed., Heyden , 1983 14. McDowell R.S. , in Advances in Infrared and Raman Spectroscopy , Vol 5 , Clark R.J.H. and Hester...
Abstract
Infrared (IR) spectroscopy is a useful technique for characterizing materials and providing information on the molecular structure, dynamics, and environment of a compound. This article provides the basic principles and instrumentation of IR spectroscopy. It discusses the sampling techniques of IR spectroscopy, namely, attenuated total reflectance spectroscopy, diffuse reflectance spectroscopy, infrared reflection-absorption spectroscopy, emission spectroscopy, and photoacoustic spectroscopy, and chromatographic techniques. Explaining the qualitative analysis of IR spectroscopy, the article provides information on spectral absorbance-subtraction, analysis of components in spectral matrix mixture, and determination of exact peak location of broad profiles. It discusses the quantitative analysis that mainly includes Beer's law for single compound in single wave number. The article also exemplifies the applications of IR spectroscopy.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001726
EISBN: 978-1-62708-178-8
... spectroscopy MFS Molecular fluorescence spectroscopy NAA Neutron activation analysis NMR Nuclear magnetic resonance OES Optical emission spectroscopy OM Optical metallography RBS Rutherford backscattering spectrometry RS Raman spectroscopy SAXS Small-angle x-ray scattering...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006360
EISBN: 978-1-62708-192-4
... relationships need to be understood. Analytical techniques in materials science such as Raman spectroscopy, analytical TEM, and x-ray photoelectron spectroscopy (XPS) are used to reveal film structure details that can be correlated to layer properties and performance. Raman spectroscopy relies on inelastic...
Abstract
This article describes two variations of carbon-base coatings: diamondlike carbon (DLC) coatings and polycrystalline diamond (PCD) coatings. It discusses the basics of a few deposition methods as they apply to industrially relevant coatings. The methods include deposition of tungsten-containing hydrogenated amorphous carbon films, deposition of tetrahedral amorphous carbon films, and deposition of silicon-incorporated hydrogenated amorphous carbon films. The most common deposition technologies for diamond films are also discussed. The article provides information on surface preparation for DLC and diamond deposition. It also provides a discussion on the coating composition and structure, mechanical and tribological properties, and applications of DLC and diamond coatings. The quality control techniques for DLC and diamond coatings are specified to meet customer requirements and ensure repeatable quality.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.9781627082136
EISBN: 978-1-62708-213-6
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003374
EISBN: 978-1-62708-195-5
..., but was not sensitive to well-bonded interfaces. Wu used localized heating coupled with acoustic emission events to detect interfacial debonding ( Ref 34 ). Laser Raman spectroscopy can be applied to the fiber-matrix interface in order to determine the actual stresses that exist at the interface. Laser Raman...
Abstract
Fiber-matrix adhesion is a variable to be optimized in order to get the best properties and performance in composite materials. This article schematically illustrates fiber matrix interphase for composite materials. It discusses thermodynamics of interphase in terms of surface energy, contact angle, work of adhesion, solid surface energy, and wetting and wicking. The article describes the change in interphase depending on the reinforcing fiber such as glass fiber, polymeric fiber, and carbon fiber. It emphasizes fiber-matrix adhesion measurements by direct methods, indirect methods, and composite laminate tests. The effects of interphase and fiber-matrix adhesion on composite mechanical properties, such as composite on-axis properties, composite off-axis properties, and composite fracture properties, are also discussed.