Skip Nav Destination
Close Modal
By
ASM Committee on Material Requirements for Service Conditions, R. David Thomas, Jr., Bruno L. Alia, William R. Apblett, Robert G. Bartifay ...
By
Gerhardus H. Koch, Michiel P.H. Brongers, Neil G. Thompson, Y. Paul Virmani, Joe H. Payer
Search Results for
Railroads
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 251 Search Results for
Railroads
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006837
EISBN: 978-1-62708-329-4
... Abstract Because of the tough engineering environment of the railroad industry, fatigue is a primary mode of failure. The increased competitiveness in the industry has led to increased loads, reducing the safety factor with respect to fatigue life. Therefore, the existence of corrosion pitting...
Abstract
Because of the tough engineering environment of the railroad industry, fatigue is a primary mode of failure. The increased competitiveness in the industry has led to increased loads, reducing the safety factor with respect to fatigue life. Therefore, the existence of corrosion pitting and manufacturing defects has become more important. This article presents case histories that are intended as an overview of the unique types of failures encountered in the freight railroad industry. The discussion covers failures of axle journals, bearings, wheels, couplers, rails and rail welds, and track equipment.
Image
Published: 01 January 1986
Fig. 11 Transverse fracture of an AISI 1075 steel railroad rail. Fracture nucleus (dark area near top of railhead) initiated a fatigue crack (large light area around nucleus).
More
Image
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 72 Fracture surface of a railroad coupler that failed in bending. The dark, irregular region is a region of shrinkage porosity. The black “thumbnail” is the region of fatigue crack initiation. Chevrons (pointing to the black “fingernail”) are visible in the overload region.
More
Image
Published: 01 January 2005
Fig. 13 Rolling of railroad wheels. (a) Photo of a wheel rolling mill. A, web roll; B, edge roll; C, centering roll; D, guide roll. (b) Sketch of a typical wheel-forming sequence
More
Image
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 15 January 2021
Fig. 72 Fracture surface of a railroad coupler that failed in bending. The dark, irregular region is a region of shrinkage porosity. The black “thumbnail” is the region of fatigue crack initiation. Chevrons (pointing to the black fingernail) are visible in the overload region.
More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001019
EISBN: 978-1-62708-161-0
... Abstract Steel springs are made in many types, shapes, and sizes, ranging from delicate hairsprings for instrument meters to massive buffer springs for railroad equipment. The primary focus of this article is small steel springs that are cold wound from wire. Wire springs are of four types...
Abstract
Steel springs are made in many types, shapes, and sizes, ranging from delicate hairsprings for instrument meters to massive buffer springs for railroad equipment. The primary focus of this article is small steel springs that are cold wound from wire. Wire springs are of four types: compression springs (including die springs), extension springs, torsion springs, and wire forms. Chemical composition, mechanical properties, surface quality, availability, and cost are the principal factors to be considered in selecting steel for springs. Both carbon and alloy steels are used extensively. The three types of wire used in the greatest number of applications of cold formed springs are hard-drawn spring wire, oil tempered wire and music wire. Residual stresses can increase or decrease the strength of a spring material, depending on their direction. Steel springs are often electroplated with zinc or cadmium to protect them from corrosion and abrasion. Although some hot-wound springs are made of steels that are also used for cold-wound springs, hot-wound springs are usually much larger, which results in significant metallurgical differences. All spring design is based on Hooke’s law; charts and formulas are available to aid in the design of springs.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000607
EISBN: 978-1-62708-181-8
...-type spring, railroad rail, and seamless drill pipe. driveshaft fatigue crack propagation fatigue fracture fractograph grain boundaries high-carbon steel hydrogen embrittlement microstructure springs Fig. 245 Surface of a fatigue fracture that occurred, after 732 h of service...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of high-carbon steels and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the following: torsional fatigue fracture, hydrogen-embrittlement fracture, fatigue crack propagation, and corrosion fatigue of components made from high-carbon steels. The high-carbon steel components include bull gear, drive shaft, power boiler stoker grate, steel wheel, spring wire, suspension spring, automotive engine valve spring, power spring, cantilever-type spring, railroad rail, and seamless drill pipe.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001373
EISBN: 978-1-62708-173-3
... that occurs in thermite welding. It provides information on the applications of thermite welding: rail welding, electrical connections, and railroad applications. The article concludes with a discussion on the associated safety aspects. aluminothermic reaction electrical connections fusion welding...
Abstract
Thermite welding (TW) is a fusion welding process in which two metals become bonded after being heated by superheated metal that has experienced an aluminothermic reaction. This article describes the thermite welding principles by presenting equations of the aluminothermic reaction that occurs in thermite welding. It provides information on the applications of thermite welding: rail welding, electrical connections, and railroad applications. The article concludes with a discussion on the associated safety aspects.
Book Chapter
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001403
EISBN: 978-1-62708-173-3
... to last for many years. This article provides an overview of the service conditions. It offers guidance for material selection applications, including bridges and buildings, pressure vessels and piping, shipbuilding and offshore structures, aerospace systems, machinery and equipment, automobiles, railroad...
Abstract
The selection of materials for welded construction applications involves a number of considerations, including design codes and specifications. Mobile structures have quite different materials requirements for weight, durability, and safety than stationary structures, which are built to last for many years. This article provides an overview of the service conditions. It offers guidance for material selection applications, including bridges and buildings, pressure vessels and piping, shipbuilding and offshore structures, aerospace systems, machinery and equipment, automobiles, railroad systems, and sheet metal. Material properties and welding processes that may be significant in meeting design goals are also described.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001822
EISBN: 978-1-62708-180-1
... fracture face and origin. Failures of locomotive axles due to overheated friction bearings are rather common in the railroad industry and have been observed for more than 100 years. Because of this, such failures are usually diagnosed merely by visual inspection of the damage. Comprehensive...
Abstract
This article provides a background of friction-bearing failures due to overheating. The failures of locomotive axles caused by overheated traction-motor support bearings are discussed. The article also describes liquid-metal embrittlement (LME) in steel. It examines the results of various axle studies, with illustrations and concludes with information on the simulation of the LME mechanism.
Image
Published: 01 January 1986
Fig. 19 Longitudinal residual stress distribution across a flash butt welded induction-hardened railroad rail head.
More
Image
Published: 15 December 2019
Fig. 18 Longitudinal residual-stress distribution across a flash-butt-welded induction-hardened railroad rail head
More
Image
Published: 01 August 2018
Fig. 38 Hand-held straight-beam contact-type search unit for the in-service ultrasonic inspection of railroad freight car axle journals
More
Image
Published: 30 September 2015
Fig. 1 Schematic of the Alcoa process for atomizing aluminum powder. Entire operation is under computer control. Powder is packed in drums or bins or is loaded for bulk shipment in trucks or railroad cars.
More
Image
Published: 01 January 1996
% C, 0.90% Mn, 0.38% Cr, 0.32% Si) that was being considered for railroad wheels. Source: Ref 19
More
Book Chapter
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003707
EISBN: 978-1-62708-182-5
... Railroads Utilities Gas distribution Drinking water and sewer systems Electrical utilities Telecommunications Transportation Motor vehicles Ships Aircraft Railroad cars Hazardous materials transport Production and manufacturing Oil and gas exploration and production Mining Petroleum refining...
Abstract
This article first describes the two methods used in the 1998 U.S. corrosion cost study. In the first method, the cost was determined by summing the costs for corrosion control methods and contract services. In the second, the cost of corrosion was first determined for specific industry sectors and then extrapolated to calculate a national total corrosion cost. The article then reports the results and conclusions of the study. It concludes with information on corrosion prevention strategies.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001014
EISBN: 978-1-62708-161-0
... in at least one cross-sectional dimension, and are used in structures such as bridges, buildings, ships, and railroad cars. Special shapes are those designed by users for specific applications. Dimensions and Tolerances The nominal dimensions of hot-rolled steel bars and shapes are designated in inches...
Abstract
Hot-rolled steel bars and other hot-rolled steel shapes are produced from ingots, blooms, or billets converted from ingots or from strand cast blooms or billets and comprise a variety of sizes and cross sections. Most carbon steel and alloy steel hot-rolled bars and shapes contain surface imperfections with varying degrees of severity. Seams, laps, and slivers are probably the most common defects in hot-rolled bars and shapes. Another condition that could be considered a surface defect is decarburization. Hot-rolled steel bars and shapes can be produced to chemical composition ranges or limits, mechanical property requirements, or both. Hot-rolled carbon steel bars are produced to two primary quality levels: merchant quality and special quality. Merchant quality is the least restrictive descriptor for hot-rolled carbon steel bars. Special quality bars are employed when end use, method of fabrication, or subsequent processing treatment requires characteristics not available in merchant quality bars.
1