Skip Nav Destination
Close Modal
By
David Arencón Osuna, Marcelo de Sousa Pais Antunes, Vera Cristina de Redondo Realinho, José Ignacio Velasco
Search Results for
R-curve methods
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1471
Search Results for R-curve methods
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1996
Fig. 27 Graphical solution for R-curve method using F-curves for uniaxially loaded sheet with central crack
More
Image
Published: 01 January 2000
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002416
EISBN: 978-1-62708-193-1
... strength and tensile strength. The article reviews low velocity impacts in aircraft structures in terms of resin toughness, laminate thickness, specimen size and impactor mass, and post-impact fatigue. It explains the tension strength analysis, such as linear elastic fracture mechanics and R-curve methods...
Abstract
This article presents the damage tolerance criteria for military composite aircraft structures to safely operate the structures with initial defects or in-service damage. It describes the effects of defects, such as wrinkles in aircraft structures, and the reduction in compressive strength and tensile strength. The article reviews low velocity impacts in aircraft structures in terms of resin toughness, laminate thickness, specimen size and impactor mass, and post-impact fatigue. It explains the tension strength analysis, such as linear elastic fracture mechanics and R-curve methods, to predict the residual strength of the structures.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003312
EISBN: 978-1-62708-176-4
... methods developed to characterize the fracture behavior of brittle solids with examples. These include the fracture toughness test method and R-curve test method at ambient and elevated temperatures. The article also includes information on the evaluation of fracture-toughness test results...
Abstract
Catastrophic failure best typifies the characteristic behavior of brittle solids in the presence of cracks or crack-like flaws under ambient conditions. This article provides a description of the concepts of fracture mechanics of brittle solids and focuses on the various testing methods developed to characterize the fracture behavior of brittle solids with examples. These include the fracture toughness test method and R-curve test method at ambient and elevated temperatures. The article also includes information on the evaluation of fracture-toughness test results and the behavior of R-curve.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002380
EISBN: 978-1-62708-193-1
... testing, J-R curve evaluation, and crack tip opening displacement (CTOD) method. Other methods used include the combined J standard method, the common fracture toughness test, transition fracture toughness testing, and the weldment fracture testing method. crack initiation fracture toughness...
Abstract
This article describes the test methods of fracture toughness, namely, linear-elastic and nonlinear fracture toughness testing methods. Linear-elastic fracture toughness testing includes slow and rapid loading, crack initiation, and crack arrest method. Nonlinear testing comprises J IC testing, J-R curve evaluation, and crack tip opening displacement (CTOD) method. Other methods used include the combined J standard method, the common fracture toughness test, transition fracture toughness testing, and the weldment fracture testing method.
Image
Published: 01 January 2000
Fig. 20 Indentation strength (IS) fracture test method for R -curve behavior where observed flexural strength is a function of indentation force in a series of two experiments. Specimens for A included residual stress of indentation; specimens for B had the residual stress annealed out
More
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006457
EISBN: 978-1-62708-210-5
...-plastic fracture, namely R-curve concept, J-integral concept, and crack tip opening displacement method. The article considers the primary measures used to assess the toughness of aluminum alloy castings and wrought alloys: notch toughness, tear resistance, and plane-strain fracture toughness...
Abstract
This article discusses the concepts underlying linear elastic fracture mechanics and elastic-plastic fracture mechanics as well as their importance in characterizing the fracture behavior of the high-strength aluminum alloys. It describes the three methods used for analyzing elastic-plastic fracture, namely R-curve concept, J-integral concept, and crack tip opening displacement method. The article considers the primary measures used to assess the toughness of aluminum alloy castings and wrought alloys: notch toughness, tear resistance, and plane-strain fracture toughness.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003306
EISBN: 978-1-62708-176-4
... a single value for this fracture toughness, a point on the R -curve must be chosen. This usually involves a construction procedure. The ASTM E 399 K Ic standard fracture toughness test method, which is described next, gives an example of a construction procedure that is used to get a single-point...
Abstract
Fracture toughness is an empirical material property that is determined by one or more of a number of standard fracture toughness test methods. This article describes the fracture toughness test methods in a chronological outline, beginning with the methods that use the linear-elastic parameter. After this, the methods that use the nonlinear parameters are discussed. The article reviews some of the work in progress to update the standard test methods, namely, common fracture toughness test method and transition fracture toughness test method. Finally, an overview of fracture toughness testing for ceramic and polymer materials is provided.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003328
EISBN: 978-1-62708-176-4
...-Method) This section describes a calculation method for which the strength values determined by tensile testing are required as material characteristics as well as fracture toughness values. This is demonstrated using the R 6-method and the R -curve method. It is indeed possible in fracture...
Abstract
This article provides an overview of the safety aspects and integrity concept for pressure vessels, piping, and tubing. It focuses on the fracture mechanics approaches used to validate components with longitudinal cracks and circumferential cracks and to analyze crack growth behavior under cyclic loading. Full-scale testing facilities and the typical test results required for various applications are discussed. The article also presents information on the transferability of mechanical properties of materials.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003305
EISBN: 978-1-62708-176-4
... basic methods of EPFM include the crack-tip opening displacement (CTOD), the J -integral, and the R -curve methods. These tests are intended to provide specialized measurements of fracture properties as follows: CTOD: full range of fracture toughness; for slow loading rates J -integral...
Abstract
The fracture-mechanics technology has significantly improved the ability to design safe and reliable structures and identify and quantify the primary parameters that affect structural integrity of materials. This article provides a discussion on fracture toughness of notched materials by explaining the ductile-to-brittle fracture transition and by correlating KId, KIc, and Charpy V-notch impact energy absorptions. It highlights the effects of constraint, temperature, and loading rate on the fracture transition. The article discusses the applications of fracture mechanism in limiting of operating stresses. It describes the mechanisms, testing methods, and effecting parameters of two main categories of fracture mechanics: linear-elastic fracture mechanics and elastic-plastic fracture mechanics. The article concludes with a discussion on the three major progressive stages of fatigue: crack initiation, crack growth, and fracture on the final cycle.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003311
EISBN: 978-1-62708-176-4
... different silicon nitride (Si 3 N 4 ) materials, A, B, and C. The R -curves were measured using short bar chevron notch methods. Material A is a hot pressed commercial Si 3 N 4 (SN-84H by NGK Technical Ceramics) with low fracture toughness; it results in flat R -curve behavior. Materials B and C, which...
Abstract
This article introduces the concepts of linear-elastic fracture mechanics (LEFM) and elastic-plastic fracture mechanics (EPFM). It reviews the fracture mechanics of ceramics and ceramic matrix composites (CMCs). The article describes some fracture toughness measurement techniques used on ceramics and CMCs: single edge notch bending, compact tension, double cantilever beam testing, chevron notch methods, and double torsion. It presents descriptions organized by their specimen types, and includes the advantages and disadvantages, as well as the experimental control schemes employed for each specimen type.
Image
Published: 01 January 2000
Fig. 28 R -curves for materials tested at room and elevated temperature usign the chevron notch beam (CNB) method. (a) Flat R -curves. (b) Nonlinear R -curves. Source: Ref 49
More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003644
EISBN: 978-1-62708-182-5
..., potentiodynamic polarization curves collected in close vicinity of E corr are used for this purpose. ASTM G 59, “Standard Practice for Conducting Potentiodynamic Polarization-Resistance Measurements,” deals with experimental procedures for determining R p according to Eq 1 . This method describes...
Abstract
This article reviews the fundamentals of electrochemical corrosion test methods. The features and requirements of the instrumentation needed for an electrochemical test are briefly discussed. The article provides a discussion on the various electrochemical techniques and tests available for laboratory studies of corrosion phenomena. The techniques and tests include no-applied-signal tests, small-signal polarization tests, large-signal polarization tests, scanning electrode techniques, and miscellaneous techniques.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005789
EISBN: 978-1-62708-165-8
..., the surface heat-flux density, q s ( t ), is considered to be positive when the probe cools, which is customary in industrial applications. To determine α as a function of time in Eq 12 , a temperature curve T n ( t ) is measured by a thermocouple located at a point r = r n near the surface...
Abstract
This article provides a discussion on probes for laboratory tests and resultant curves of industrial quenching processes. It describes the scope of the tests, and the calculation of heat-transfer coefficient (HTC) based on the tests. The article highlights the differences between the laboratory tests and characterization of industrial quenching processes. It reviews the importance of initial heat-flux density and first critical heat-flux density. The theoretical principle behind and the purpose of the temperature gradient method are discussed. The article provides information on the design of the probe, heat-extraction dynamics, and influence of wetting kinematics. It also includes discussions on the simplified 1-D temperature-distribution model, calculation of the HTC, and the finite-volume method for the heat-conduction equation.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003310
EISBN: 978-1-62708-176-4
... incapable of significant plastic deformation (e.g., polystyrene). ASTM D 6068 ( Ref 25 ) describes a method for measuring J-R curves (a measure of elastic-plastic fracture toughness) for polymer specimens that are not large enough to experience conditions of plane strain during loading. However, methods...
Abstract
This article discusses the J-integral-based single and multiple specimen techniques of the ASTM E 1737 test method for determining plane strain fracture toughness of polymeric materials. It describes the fracture toughness testing of thin sheets and films. The article concludes with information on the alternative methods for determining the fracture toughness of polymer materials.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0009218
EISBN: 978-1-62708-176-4
... and secondary creep curves ( Ref 19 , 20 , 25 , 26 , 27 , 28 ). By differentiating Eq 4 , an estimate of the creep rate ( ε ˙ c ∗ ) can be obtained: (Eq 9) ε ˙ c = ε t r ε − r t + ε ˙ m Thus, the initial creep rate ε ˙ 0 is given by: (Eq 10...
Abstract
This article presents typical problems encountered in the analysis of experimental creep and creep-rupture data and the possible solutions to these drawbacks. It provides information on planning the test and creep strain/time relationships. The exponential creep equation and the rational polynomial creep equation are discussed. The article also describes the dependence of stress and temperature on equation parameters and explains the lot-centered regression analysis.
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001837
EISBN: 978-1-62708-181-8
... in partially oriented fracture surfaces. This section will also examine and compare direct methods for estimating the fracture surface area. An alternative to these methods is the parametric equation based on the relationship between R L and R S . Roughness Parameters Several types of roughness...
Abstract
The principal objective of quantitative fractography is to express the characteristics of features in the fracture surface in quantitative terms, such as the true area, length, size, spacing, orientation, and location. This article provides a detailed account of the development of more quantitative geometrical methods for characterizing nonplanar fracture surfaces. Prominent techniques for studying fracture surfaces are based on the projected images, stereoscopic viewing, and sectioning. The article provides information on various roughness and materials-related parameters for profiles and surfaces. The applications of quantitative fractography for striation spacings, precision matching, and crack path tortuosity are also discussed.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003241
EISBN: 978-1-62708-199-3
... and indenter, as shown in Table 2 . Each number is suffixed by first the letter H (for hardness), then the letter R (for Rockwell), and finally the letter that indicates the scale used. For example, a value of 60 on the Rockwell C scale is expressed as 60 HRC, and so on. Regardless of the scale used, the “set...
Abstract
This article reviews the various types of mechanical testing methods, including hardness testing; tension testing; compression testing; dynamic fracture testing; fracture toughness testing; fatigue life testing; fatigue crack growth testing; and creep, stress-rupture, and stress-relaxation testing. Shear testing, torsion testing, and formability testing are also discussed. The discussion of tension testing includes information about stress-strain curves and the properties described by them.
Book Chapter
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006910
EISBN: 978-1-62708-395-9
... ) for the construction of the crack growth resistance curve ( J-R curve) of polymers. Known as the normalization method, it relies on the representation of J vs Δ a ( Ref 38 – 40 ), trying to overcome some of the problems of the multi-specimen methodology, which are mainly based on uncertainties associated...
Abstract
There are many different types of polymeric materials, ranging from glassy to semicrystalline polymers and even blends. Their mechanical properties range from pure elastic with very high strains to fracture (elastomers) to almost pure linear elastic (Hookian behavior) with low strains to fracture (glassy polymers). This article provides an overview of historical development of fracture behavior in polymers. It discusses the processes involved in three fracture test methods for polymers, namely linear elastic fracture mechanics, elastic-plastic fracture mechanics, and post-yield fracture mechanics.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003513
EISBN: 978-1-62708-180-1
... is, essentially, a graphical model, shown schematically in Fig. 2 , that reflects the stress-strain curve of the material. The FAD consists of two elements: the failure assessment curve (FAC) and the failure assessment point (FAP). The collapse ratio, S r or L r , is the ratio of the applied stress...
Abstract
Optimized modeling of fracture-critical structural components and connections requires the application of elastic-plastic fracture mechanics. Such applications, however, can require sophisticated analytical techniques such as crack tip opening displacement (CTOD), failure assessment diagram (FAD), and deformation plasticity failure assessment diagram (DPFAD). This article presents the origin and description of FAD and addresses R6 FAD using J-integral. It details the fracture criteria of BS 7910. The factors to be considered during the use of FAD and the applications of FAD are also reviewed.
1