Skip Nav Destination
Close Modal
By
Peter D. Lee, Junsheng Wang
Search Results for
Porosity
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1482
Search Results for Porosity
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005222
EISBN: 978-1-62708-187-0
... Abstract This article provides a detailed discussion on the causes of formation of shrinkage porosity and gas porosity along with the methods involved in eliminating them. It discusses the process of porosity formation and the factors affecting porosity formation, including alloy composition...
Abstract
This article provides a detailed discussion on the causes of formation of shrinkage porosity and gas porosity along with the methods involved in eliminating them. It discusses the process of porosity formation and the factors affecting porosity formation, including alloy composition, external pressure, and cooling conditions.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006107
EISBN: 978-1-62708-175-7
... Abstract This article focuses on the theory, advantages, and limitations of various methods used for the determination of surface area, density, and porosity of powder. These include gas adsorption, permeametry, pycnometry, and mercury porosimetry. Information on various equipment used...
Abstract
This article focuses on the theory, advantages, and limitations of various methods used for the determination of surface area, density, and porosity of powder. These include gas adsorption, permeametry, pycnometry, and mercury porosimetry. Information on various equipment used in these processes are also provided.
Book Chapter
Modeling of Porosity Formation during Solidification
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005520
EISBN: 978-1-62708-197-9
... Abstract There is a need for models that predict the percentage and size of porosity formed during solidification in order to effectively predict mechanical properties. This article provides an overview of equations that govern pore formation. It reviews the four classes of models, highlighting...
Abstract
There is a need for models that predict the percentage and size of porosity formed during solidification in order to effectively predict mechanical properties. This article provides an overview of equations that govern pore formation. It reviews the four classes of models, highlighting both the benefits and drawbacks of each class. These classes include criteria functions, analytical models, continuum models, and kinetic models. The article also tabulates the criteria functions for porosity prediction.
Image
Dendritic shrinkage porosity in aluminum alloy A356. Shrinkage porosity is ...
Available to Purchase
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 60 Dendritic shrinkage porosity in aluminum alloy A356. Shrinkage porosity is a common imperfection in cast components and also a common location for fracture initiation. (a) Fracture surface from a fatigue specimen. 30×. (b) Same specimen as in part (a) but at lower magnification (13
More
Image
(a) Gas porosity and (b) shrinkage porosity in an AA 5182 remelt secondary ...
Available to PurchasePublished: 01 December 2008
Image
Dendritic shrinkage porosity in aluminum alloy A356. Shrinkage porosity is ...
Available to Purchase
in Mechanisms and Appearances of Ductile and Brittle Fracture in Metals
> Failure Analysis and Prevention
Published: 15 January 2021
Fig. 60 Dendritic shrinkage porosity in aluminum alloy A356. Shrinkage porosity is a common imperfection in cast components and a common location for fracture initiation. (a) Fracture surface from a fatigue specimen. Original magnification: 30×. (b) Same specimen as in part (a) but at lower
More
Image
Typical defects observable using optical microscopy. (a) Shrinkage porosity...
Available to PurchasePublished: 01 January 1986
Fig. 17 Typical defects observable using optical microscopy. (a) Shrinkage porosity in an aluminum alloy 5052 ingot. Note angularity. 50×. (b) Coarse primary CrAl 7 crystal in aluminum alloy 7075 ingot. 100×. (c) Oxide stringer inclusion in a rolled aluminum alloy 1100 sheet. 250×. All
More
Image
Porosity in a fracture of a cast aluminum alloy A357 blade from a small air...
Available to PurchasePublished: 01 January 1987
Fig. 109 Porosity in a fracture of a cast aluminum alloy A357 blade from a small air turbine. The blade fractured by overload from an impact to its outer edge.
More
Image
Published: 01 January 2002
Fig. 3 Shrinkage porosity at bolt-hole bosses in a ductile-iron cylinder head
More
Image
Wire-stretching jaws that broke because of shrinkage porosity and low ducti...
Available to PurchasePublished: 01 January 2002
Fig. 5 Wire-stretching jaws that broke because of shrinkage porosity and low ductility of case and core. The jaws, sand cast from low-alloy steel, were used to stretch wire for prestressed concrete beams. (a) Two pairs of movable jaws. 0.7×. (b) Two pairs of stationary jaws. 0.7×. (c) and (d
More
Image
Published: 01 January 2002
Fig. 25 Porosity in GMAW core-plated silicon steel laminations. 100×
More
Image
Pulsed GMAW spot weld showing porosity in dissimilar metal weldment; a copp...
Available to PurchasePublished: 01 January 2002
Fig. 26 Pulsed GMAW spot weld showing porosity in dissimilar metal weldment; a copper-nickel alloy to a carbon-manganese steel using an ERNiCu-7 (Monel 60) electrode. Etchant, 50% nitric-50% acetic acid. 4×
More
Image
Published: 01 January 2002
Fig. 27 Wormhole porosity in a weld bead. Longitudinal cut. ∼20×
More
Image
Radiograph showing herringbone porosity in automatic weld due to disruption...
Available to PurchasePublished: 01 January 2002
Fig. 28 Radiograph showing herringbone porosity in automatic weld due to disruption of gas shield
More
Image
Gas porosity in electron beam welds of low-carbon steel and titanium alloy....
Available to PurchasePublished: 01 January 2002
Fig. 58 Gas porosity in electron beam welds of low-carbon steel and titanium alloy. (a) Gas porosity in a weld in rimmed AISI 1010 steel. Etched with 5% nital. 30×. (b) Massive voids in weld centerline of 50 mm (2 in.) thick titanium alloy Ti-6Al-4V. 1.2×
More
Image
Effect of amount of flux used on the porosity and mechanical properties of ...
Available to PurchasePublished: 01 December 2008
Fig. 7 Effect of amount of flux used on the porosity and mechanical properties of cast tin bronze alloy. Source: Ref 2
More
Image
Published: 01 December 2008
Fig. 9 Typical micrograph of gas porosity. Original magnification: 100×
More
Image
Forms of shrinkage porosity in the sand castings of alloys that freeze in a...
Available to PurchasePublished: 01 December 2008
Fig. 9 Forms of shrinkage porosity in the sand castings of alloys that freeze in a pasty manner
More
Image
Y-junctions caused porosity in this 17-4 PH stainless steel investment cast...
Available to PurchasePublished: 01 December 2008
Fig. 14 Y-junctions caused porosity in this 17-4 PH stainless steel investment casting. (a) Revising to T-junctions. (b) eliminated the cause of the defects.
More
1