Skip Nav Destination
Close Modal
By
J.H. Miller, P.K. Liaw
By
David M. Christie, Ronald J. Parrington
Search Results for
Plastic bending
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 931
Search Results for Plastic bending
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2006
Fig. 19 Pure plastic bending of strip specimen. (a) Geometry of deformation. R i , inner radius of curvature; R o , outer radius of curvature; R n , radius of curvature of the neutral axis; R u , radius of currently unstretched fiber; R c , current radius of curvature of original
More
Image
Comparison of results for determining plastic bending in a plate. (a) Distr...
Available to PurchasePublished: 01 January 2006
Fig. 22 Comparison of results for determining plastic bending in a plate. (a) Distribution of tangential and radial stresses for a 25 mm (1 in.) thick plate bent to R i =100 mm (4 in.). (b) Stress-strain diagrams used in the analyses for (a)
More
Image
Published: 01 January 2000
Fig. 7 Pure plastic bending of strip specimen. (a) Geometry of deformation. R i = inner radius of curvature; R o = outer radius of curvature; R n = radius of curvature of the neutral axis; R u = radius of currently unstretched fiber; R c = current radius of curvature of original
More
Image
Comparison of results for determining plastic bending in a plate. (a) Distr...
Available to PurchasePublished: 01 January 2000
Fig. 10 Comparison of results for determining plastic bending in a plate. (a) Distribution of tangential and radial stresses for a 25 mm (1 in.) thick plate bent to R i = 100 mm (4 in.). (b) Stress-strain diagrams used in the analyses for (a)
More
Image
Published: 01 January 2001
Fig. 1 Example of plastic bending curves for nickel alloy 718. F tu , ultimate tensile strength; F ty , yield strength.
More
Image
Effect of austenitizing conditions on the plastic work of bending of a conv...
Available to PurchasePublished: 30 September 2015
Fig. 23 Effect of austenitizing conditions on the plastic work of bending of a conventional HSS at constant hardness of 60 HRC
More
Book Chapter
Bending of Sheet Metal
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005161
EISBN: 978-1-62708-186-3
...-plastic bending, and pure plastic bending. Sheet metal bendability is a critical factor in many forming operations. The article illustrates the derivation of two relevant bend-ductility equations. bendability bending bending stress elastic bending elastic-plastic bending flanging non...
Abstract
Bending is a common metalworking operation to create localized deformation in sheets (or blanks), plates, sections, tubes, and wires. This article emphasizes on the bending of sheet metal along with some coverage on flanging. It informs that variations in the bending stresses cause springback after bending, and discusses the variables and their effects on springback, as well as the methods to overcome or counteract them. These methods include overbending, bottoming or setting, and stretch bending. The article provides information on elastic bending, non-cylindrical bending, elastic-plastic bending, and pure plastic bending. Sheet metal bendability is a critical factor in many forming operations. The article illustrates the derivation of two relevant bend-ductility equations.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003262
EISBN: 978-1-62708-176-4
.... This article discusses the stress-strain relationships, strain curvature, and stress-moment equations for elastic, noncylindrical, elastic-plastic, and pure plastic bending conditions. It also reviews the distribution of residual stress and springback. stress-strain behavior bending deformation strain...
Abstract
A characteristic feature of bending is the inhomogeneous (nonuniform) nature of the deformation. Therefore, in a bent specimen, the strain and stress at a given point are dependent on the location of the point with respect to the neutral axis of the cross-sectional area of the specimen. This article discusses the stress-strain relationships, strain curvature, and stress-moment equations for elastic, noncylindrical, elastic-plastic, and pure plastic bending conditions. It also reviews the distribution of residual stress and springback.
Image
Springback of a beam in simple bending. (a) Elastic bending. (b) Elastic an...
Available to PurchasePublished: 01 January 2006
Fig. 7 Springback of a beam in simple bending. (a) Elastic bending. (b) Elastic and plastic bending. (c) Bending and stretching
More
Image
Simulated role of plasticity in springback for a draw-bend test. (a) Differ...
Available to PurchasePublished: 01 January 2006
Fig. 24 Simulated role of plasticity in springback for a draw-bend test. (a) Difference of springback angle (Δθ) for pure-elastic and elastoplastic springback simulations. (b) Differences in through-thickness stress distribution following pure-elastic and elastoplastic springback. R / t
More
Image
Optical images of crazing in bend specimens using phthalate plasticizer on ...
Available to PurchasePublished: 15 May 2022
Fig. 10 Optical images of crazing in bend specimens using phthalate plasticizer on the top surface of the specimen; (a) crazes in PMMA polymer, (b) crazes in PET polymer
More
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005131
EISBN: 978-1-62708-186-3
... of large-strain, elastic-plastic deformation are treated in a simplified, intuitive way, with numerous references provided for those wishing to delve into the theoretical underpinnings in more detail. Simple bending is first considered, along with a discussion of approximations, then bending with tension...
Abstract
Springback refers to the elastically driven change of shape that occurs after deforming a body and then releasing it. This article presents an introduction to the concepts of springback simulation as well as recommendations for its practice in a metal forming setting of thin beams or sheets. It discusses bending with tension and more complex numerical treatments. The article addresses the limitations of the various assumptions followed in springback simulation. It provides a discussion on the design of dies and tooling using an assumed springback prediction capability.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005163
EISBN: 978-1-62708-186-3
... achieve their good combination of formability and weldability through microalloying. Advanced high-strength steels (AHSS) such as dual-phase (DP), complex-phase (CP), and transformation-induced plasticity (TRIP) steels show superior strength compared to the HSLA grades with the same formability. The AHSS...
Abstract
This article provides information on the classification of high-strength steels (HSS) and advanced high-strength steels (AHSS) and tabulates designation of HSS and AHSS as recommended by the American Iron and Steel Institute. It reviews the major grades of HSS and AHSS that are used or will potentially be used in industrial applications. The article discusses different stamping issues such as edge cracking and springback, encountered during forming of AHSS, and lists guidelines for reducing springback in stamped components. It concludes with a discussion on the major advantages and disadvantages of using HSS and AHSS in automotive applications.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005130
EISBN: 978-1-62708-186-3
... is a term used to describe a metal sheet bending process in which there is a concave hinge on the bending straight line. During the heating process, the heat input and cooling stream 1 ( Fig. 1 ) are combined to make the upper part of the sheet metal section (zone S 1 , Fig. 2 ) reach its plastic state...
Abstract
This article begins with a discussion on the energy sources used for thermal forming. These include electric induction coil, gas flame, plasma torch, and laser beam. The article discusses the mechanisms of forming and different modes of deformation. It describes the effect of process and material parameters on forming and the effect of metallurgical changes on mechanical property and microstructure of stainless steel. The article concludes with information on the applications of thermal forming.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003666
EISBN: 978-1-62708-182-5
... specimens can be used for materials that do not deform plastically when bent to ( L − H )/H = 0.01. The specimens should be approximately 25 × 250 mm (1 × 10 in.) flat strips cut to appropriate lengths to produce the desired stress after bending, as shown in Fig. 7(a) . The maximum stress occurs...
Abstract
This article describes the incubation, nucleation, and propagation of stress-corrosion cracking and how to evaluate it using standard tests. It discusses constant-strain, constant-load, bending, and uniaxial tension testing and how they compare when evaluating smooth and precracked test specimens under elastic-strain, plastic-strain, and residual-stress conditions. The article provides guidance on specimen selection and preparation, strain rate, and test equipment. It also examines service and laboratory test environments and provides detailed information on how to test various steels and alloys and how to interpret test results.
Book Chapter
Fracture Toughness of Ceramics and Ceramic Matrix Composites
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003311
EISBN: 978-1-62708-176-4
... specimen type. linear-elastic fracture mechanics elastic-plastic fracture mechanics fracture mechanics ceramics single edge notch bending testing compact tension testing double cantilever beam testing chevron notch methods double torsion method fracture toughness ceramic matrix composites...
Abstract
This article introduces the concepts of linear-elastic fracture mechanics (LEFM) and elastic-plastic fracture mechanics (EPFM). It reviews the fracture mechanics of ceramics and ceramic matrix composites (CMCs). The article describes some fracture toughness measurement techniques used on ceramics and CMCs: single edge notch bending, compact tension, double cantilever beam testing, chevron notch methods, and double torsion. It presents descriptions organized by their specimen types, and includes the advantages and disadvantages, as well as the experimental control schemes employed for each specimen type.
Book Chapter
Stress-Relief Heat Treating of Steel
Available to PurchaseSeries: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005782
EISBN: 978-1-62708-165-8
...; during forming operations such as shearing, bending, drawing, and machining; and during fabrication, in particular, welding. Residual stresses are present whenever a component is stressed beyond its elastic limit and plastic flow occurs. Table 1 lists a summary of compressive and tensile residual...
Abstract
Stress-relief heat treating of steel is the uniform heating of a structure to a suitable temperature below the transformation range, holding at this temperature for a predetermined period of time, followed by uniform cooling. This article provides information on the sources of residual stress, briefly describes the factors influencing the relief of residual stresses, and discusses the various thermal stress-relief methods. It contains tables that provide a summary of compressive and tensile residual stresses at the surface of parts fabricated by common manufacturing processes. The article presents the temperature range of alloy steels for stress-relief heat treating and describes the importance of stress relief of springs.
Book Chapter
Abbreviations and Symbols: Fatigue and Fracture
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0005723
EISBN: 978-1-62708-193-1
... density, mass density or the ratio of alternating to mean load hcp hexagonal close-packed accumulated plastic strain values, A =cra lam HR Hui-Riedel (stress field) a actual or local stress at a stress A(B) arc bend specimen AMT accelerated mission test HRR Hutchinson-Rice-Rosengrcn (stress concentration...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.9781627081931
EISBN: 978-1-62708-193-1
Book Chapter
Macroscale Fracture Appearances
Available to PurchaseBook: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0006873
EISBN: 978-1-62708-387-4
.... The postfracture paperclip fragments are grossly deformed and do not display the original geometry of the paperclip when they are placed back together. Depending on the type of loading, plastic deformation may be in the form of necking or reduction of area, elongation, bending, twisting, lateral expansion, and so...
Abstract
This article provides practical guidance for interpreting macroscale fracture appearances. It focuses on metallic fracture features. The article covers the important distinctions between ductile and brittle fracture and the influence of the type of loading on the facture-surface orientation. It discusses both ductile fracture and brittle fracture macroscale features. Finally, it delves into fracture-initiation sites and metal-processing effects on fracture appearance, including castings, powder metals, additive manufacturing, and surface treatments.
1