Skip Nav Destination
Close Modal
By
Jigneshkumar P. Patel, Yanika Schneider, Malavarayan Sankarasubramanian, Vidya Jayaram
Search Results for
PAN-based carbon fibers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 142 Search Results for
PAN-based carbon fibers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0009241
EISBN: 978-1-62708-195-5
... Abstract The earliest commercial use of carbon fibers is often attributed to Thomas Edison's carbonization of cotton and bamboo fibers for incandescent lamp filaments. This article describes the manufacture of PAN-based carbon fibers and pitch-based carbon fibers. It discusses the properties...
Abstract
The earliest commercial use of carbon fibers is often attributed to Thomas Edison's carbonization of cotton and bamboo fibers for incandescent lamp filaments. This article describes the manufacture of PAN-based carbon fibers and pitch-based carbon fibers. It discusses the properties and characteristics of carbon fibers in terms of axial structure, transverse structure, and interfacial bonding. The article discusses the typical applications of carbon fibers, including aerospace and sporting goods. It concludes with a discussion on anticipated developments in carbon fibers.
Image
Published: 01 January 2001
Fig. 2 The undulating ribbon structure of the graphene layers for a PAN-based carbon fiber with a 400 GPa (600 × 10 6 psi) modulus. The ribbons at the surface have lower amplitude than in the core. There are about 20 graphene layers in the ribbons in the core and about 30 near the surface.
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003034
EISBN: 978-1-62708-200-6
... strengths, and flexural modulus especially, also closely follow fiber properties. However, compressive-strength properties show a distinct pattern of higher values produced by fiberglass reinforcement, followed by polyacrylonitrile (PAN)-based carbon fiber materials. Aramid fiber compounds have lower...
Abstract
Bulk molding compounds can be molded into a variety of complex shapes by methods that can be readily automated for high volume production. This article describes the formulation and processing (compound formation, and molding methods) of bulk molding compounds. It discusses the effects of fiber type, fiber length, and matrix type on thermoset bulk molding compounds. The markets for long-fiber-reinforced bulk molding compounds are electrical, ordnance, aerospace, industrial, sporting goods, and automotive applications.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003064
EISBN: 978-1-62708-200-6
.... These thermal characteristics influence the processing sequences that are used to convert PAN precursors to carbon fiber. Carbon fiber based on a PAN precursor generally has a higher tensile strength than a fiber based on any other precursor. This is due to a lack of surface defects, which act as stress...
Abstract
Carbon-carbon composites (CCCs) are introduced in fields that require their high specific strength and stiffness, in combination with their thermoshock resistance, chemical resistance, and fracture toughness, especially at high temperatures. The use of CCCs has expanded as the price of carbon fibers has dropped and their mechanical properties have increased. This article begins with an overview of the carbon conversion processes, fiber properties and microstructures, and interfacial bonding and environmental interaction of carbon fibers, followed by a detailed discussion on the various techniques available for processing CCCs for specific applications, including preform fabrication (fiber weaving), densification, application of protective coatings, and joining. The article closes with a description of the mechanical and physical properties and applications of CCCs. The main applications of CCCs, in terms of money and mass, are in the military, space, and aircraft industries.
Image
in Metal-Matrix Composites
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 5 Carbon fiber axial modulus versus axial coefficient of thermal expansion for mesophase (pitch-base) and polyacrylonitride-base (pan-base) graphite fibers. Source: Ref 18
More
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003370
EISBN: 978-1-62708-195-5
...- (PAN-) based carbon-fiber materials. Aramid- fiber compounds have lower compressive- strength values. PAN-based carbon fibers, being brittle, demonstrate the lowest Izod impact strength. Glass fibers have higher elongation values than aramid fibers, but are notch sensitive. The toughness of aramid...
Abstract
Molding compounds are plastic materials in varying stages of pellets or granulation that consist of resin, filler, pigments, reinforcement, plasticizers, and other ingredients ready for use in a molding operation. This article describes the material components and physical properties of sheet molding compounds (SMC). The three types of resin paste mixing techniques, such as batch, batch/continuous, and continuous, for an SMC operation are reviewed. The article discusses the design features and functional operations of the two types of SMC machines, namely, continuous-belt and beltless machines. It explains the formulation and processing of bulk molding compounds and reviews molding methods for bulk molding compounds, including compression, transfer, and injection molding. The effects of the fiber type and length and the matrix type on thermoset bulk molding compounds are discussed. It describes the four injection molding processes of injection molding compounds such as feeding, transporting, injecting, and flowing.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006897
EISBN: 978-1-62708-392-8
.... Properties of polyacrylonitrile (PAN) and pitch-based carbon fibers are shown in Table 2 . Carbon fibers are approximately 5 to 10 mm (0.2 to 0.4 in.) in diameter and are usually composed of carbon atoms. Carbon fibers have several benefits, including excessive stiffness, high tensile energy, low weight...
Abstract
An ankle-foot orthosis (AFO) is a support designed to regulate the ankle's position and mobility, compensate for weakness, or rectify abnormalities. This article focuses on the biomechanical affects and mechanical properties of custom-made 3D-printed AFOs and compares them to traditionally created AFOs. Investigations in the fields of 3D scanning, 3D printing, and computer-aided design and analysis for the production of custom-made AFOs are also covered.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003033
EISBN: 978-1-62708-200-6
... precursors to carbon fiber. Carbon fiber based on a PAN precursor generally has a higher tensile strength than a fiber based on any other precursor. This is due to a lack of surface defects, which act as stress concentrators and therefore reduce tensile strength. Pitch Precursors Pitch precursors...
Abstract
This article addresses the types, properties, forms, and applications of fibers that are available for use in fiber-reinforced polymeric matrix composites, including glass, graphite, carbon, aramid, boron, silicon carbide, ceramic, continuous oxide and discontinuous oxide fibers. It describes the functions, types, and chemical composition of fiber sizing agents. The article discusses the styles, properties, applications, and weaving methods of unidirectional, two-directional and multidirectionally reinforced fabrics. The article also reviews the use of prepreg resins in aerospace and lower performance applications.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003031
EISBN: 978-1-62708-200-6
... economical fibers because the carbon yield is higher and because PAN-based fibers do not intrinsically require a final high-temperature “graphitization” step ( Ref 5 ). The patent literature abounds with the wide range of precursor materials that can be used to make carbon fibers. A great hope...
Abstract
This article discusses the types, properties, and uses of continuous-fiber-reinforced composites, including glass, carbon, aramid, boron, continuous silicon carbide, and aluminum oxide fiber composites. While polyester and vinyl ester resins are the most used matrix materials for commercial applications, epoxy resins, bismaleimide resins, polyimide resins, and thermoplastic resins are used for aerospace applications. The article addresses design considerations as well as product forms and fabrication processes.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003359
EISBN: 978-1-62708-195-5
... loss of fiber properties. More expansive coverage of these fibers is provided in the article “Ceramic Fibers” in this Volume. Carbon Fibers Two classes of carbon fiber, polyacrylonitrile (PAN) and pitch-based fibers, derive quite different structures and properties: the PAN being higher...
Abstract
For the reinforcement of metal-matrix composites, four general classes of materials are commercially available: oxide fibers based primarily on alumina and alumina silica systems, nonoxide systems based on silicon carbide, boron fibers, and carbon fibers. This article discusses the key aspects of aluminum oxide fibers, silicon carbide fibers, boron fibers, and carbon fibers. The commercial fibers for reinforcement of metal-matrix composites are presented in a table. A tabulation of the coating schemes for silicon carbide monofilament fibers is also provided.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001318
EISBN: 978-1-62708-170-2
... the 1980s, a significant level of research activity focused on the protection of high-performance carbon-carbon that used heat-stabilized polyacrylonitrile (PAN) or pitch-based fibers. These composites have higher strength, higher elastic moduli, and lower thermal expansion coefficients than the rayon-based...
Abstract
Carbon-carbon is a unique composite material in which a nonstructural carbonaceous matrix is reinforced by carbon fibers to create a heat-resistant structural material that finds application in the aerospace and defense industries. This article provides a detailed account of the fundamentals of protecting carbon-carbon composites and explains the various coating deposition techniques, namely, pack cementation, chemical vapor deposition, and slurry coatings. It includes information on the practical limitations of coatings for the carbon-carbon composites.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003449
EISBN: 978-1-62708-195-5
... commercially available PAN- based carbon fibers. In C-C composites, the strain-to-failure of the carbon matrix is typically much lower than that of the reinforcing fibers, and as noted earlier the matrix is frequently microcracked as a result of thermal expansion mismatch stresses created during processing...
Abstract
This article discusses the mechanisms for enhancing the reliability of three types of ceramic-matrix composites: discontinuously reinforced ceramic-matrix composites, continuous fiber ceramic composites, and carbon-carbon composites. It also presents examples of their mechanical and physical properties. Examples that illustrate the properties of commercially available materials are also provided.
Book Chapter
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006673
EISBN: 978-1-62708-213-6
... of two primary components: a microbalance and a furnace ( Fig. 1 ). The sample is suspended from the balance while heated in conjunction with a thermal program. A ceramic or, more often, a platinum sample pan is used for the evaluation. As part of the TGA evaluation, the sample is usually heated from...
Abstract
Thermogravimetric analysis (TGA) is a thermal analysis technique that measures the amount and rate of change in the weight of a material as a function of temperature or time in a controlled atmosphere. This article provides a detailed account of the concepts of TGA, covering the various criteria to be considered for specimen preparation and calibration of TGAs. The use of thermogravimetric analysis data in the assessment of failure analysis of plastics and the combined usage of TGA with other techniques to understand the changes in the sample are also covered. The article provides examples of applications and provides information on the interpretation of TGA.
Book Chapter
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006939
EISBN: 978-1-62708-395-9
...-based carbon fibers typically exhibit better tensile and compressive properties when compared to fibers made from other sources ( Ref 13 , 19 ). The PAN-based carbon fibers are manufactured from polymerized PAN filaments, which are heated to 300 °C (570 °F) in air ( Ref 19 , 20 ). This process...
Abstract
Polymer materials are key building blocks of the modern world, commonly used in packaging, automobiles, building materials, electronics, telecommunications, and many other industries. These commercial applications of polymeric materials would not be possible without the use of additives. This article is divided into five sections: mechanical property modifiers, physical property modifiers, biological function modifiers, processing aids, and colorants. It describes three classes of additives that are used to inhibit biological activity, six classes of mechanical property modifiers, three classes of physical property modifiers, and two classes of both colorants and processing aids.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003474
EISBN: 978-1-62708-195-5
... in the future until fuel-cell technology is perfected. Fig. 11 Composite fuel storage tank. Reprinted by permission from the Society for the Advancement of Material and Process Engineering (SAMPE) Lower-Cost Carbon Fibers The composite materials supply base has taken initiatives to produce good...
Abstract
This article discusses the advantages of polymer matrix composite for automotive application in terms of design drivers, noise, vibration, harshness efficiency, process materials property constraints, safety and reliability, design optimization, structural and appearance requirements, recyclability, and processability. It describes the properties of high-volume composites used in automotive industries. The article provides a discussion on state-of-the-art and developing technologies in automotive field.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003422
EISBN: 978-1-62708-195-5
..., polyacrylonitrile (PAN), or petroleum pitch and have a wide range of properties. For example, the elastic modulus along the fiber axis ranges from approximately 41.4 GPa (6 × 10 6 psi) for rayon fibers to 414 GPa (60 × 10 6 psi) for heat-stabilized PAN to 690 GPa (100 × 10 6 psi) for pitch fibers. The axial...
Abstract
This article describes the manufacture, post-processing, fabrication, and properties of carbon-carbon composites (CCCs). Manufacturing techniques with respect to the processibility of different geometries of two-directional and multiaxial carbon fibers are listed in a table. The article discusses matrix precursor impregnants, liquid impregnation, and chemical vapor infiltration (CVI) for densification of CCCs. It presents various coating approaches for protecting CCCs, including pack cementation, chemical vapor deposition, and slurry coating. Practical limitations of coatings are also discussed. The article concludes with information on the mechanical properties of CCCs.
Series: ASM Handbook
Volume: 23A
Publisher: ASM International
Published: 12 September 2022
DOI: 10.31399/asm.hb.v23A.a0006895
EISBN: 978-1-62708-392-8
.... , Process and Apparatus for Preparing Artificial Threads , Google Patents , 1934 20. Gouma P.-I.P. , Electrospinning: A Novel Nanomanufacturing Technique for Hybrid Nanofibers and Their Non-Woven Mats , Nanomaterials for Chemical Sensors and Biotechnology , Pan Stanford Publishing Pte. Ltd...
Abstract
This article discusses electrospinning as a method for obtaining nanofibers, some of the challenges and limitations of the technique, advancements in the field, and how it may be used in key functional applications. The key drawbacks of traditional electrospinning processes include relatively slow speed of nanofiber production, low product yield, and relatively high cost. The article also addresses novel high-throughput techniques and methods designed for the scalable synthesis of nanofibers and nanofibrous mats that are of reasonable cost.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003480
EISBN: 978-1-62708-195-5
... heat pipes in transporting heat over relatively short distances. An additional benefit is that solid-state methods of heat transfer are more reliable. Carbon Fibers The most important types of commercial carbon fibers at this time are made from polyacrylonitrile (PAN) and pitches derived from...
Abstract
This article presents an overview of advanced composites, namely, polymer matrix composites, metal-matrix composites, ceramic-matrix composites, and carbon-matrix composites. It also provides information on the properties and applications of the composites in thermal management and electronic packaging.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003350
EISBN: 978-1-62708-195-5
... carbon structure. Rayon has been largely supplanted as a precursor by polyacrylonitrile (PAN). Polyacrylonitrile precursors produce much more economical fibers because the carbon yield is higher and because PAN-based fibers do not intrinsically require a final high-temperature “graphitization” step...
Abstract
This article begins with a brief history of composite materials and discusses its characteristics. It presents an introduction to the constituents, product forms, and fabrication processes of composite materials. The article concludes with a discussion on the applications of organic-matrix, metal-matrix, and ceramic-matrix composites.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003019
EISBN: 978-1-62708-200-6
... fabricated by this technique ( Ref 9 , 10 ) is shown in Fig. 6 . Fig. 6 SMC structural floor pan The limitations for using compression molding of SMC-type materials in truly structural applications are not yet well established. Assuming that continuous fiber is strategically incorporated...
Abstract
The compression molding process is most commonly called the sheet molding compound (SMC) process in reference to the precursor sheet molding compound material it uses. This article discusses the types of materials used for sheet manufacture, and describes the manufacturing and processing parameters of SMC components, providing details on tooling and process advantages and limitations. The article provides a general overview of the types of compression molding processes, including structural compression molding and thermoplastic compression molding.
1