Skip Nav Destination
Close Modal
By
David O'Donnell
By
Hendrikus H. Vanderveldt
By
J.J. deBarbadillo, J.J. Fischer
By
Timothy J. Horn, Diana Gamzina
By
James D. Destefani
By
S.D. Kiser
By
John A. Shields, Jr., Kurt D. Moser, R. William Buckman, Jr., Todd Leonhardt, C. Craig Wojcik
By
K. Sampath, W.A. Baeslack III
By
Prasan K. Samal
By
Darrell Manente
By
A.C. Lingenfelter
By
Peter C. Collins, Hamish L. Fraser
Search Results for
Oxide-dispersion strengthened materials
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 425
Search Results for Oxide-dispersion strengthened materials
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Joining of Oxide-Dispersion-Strengthened Materials
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001467
EISBN: 978-1-62708-173-3
... Abstract Oxide - dispersion - strengthened (ODS) materials utilize extremely fine oxide dispersion for strengthening, such as nickel-base alloys or alumina. The processing techniques employed in the production of ODS alloys produce some entrapped gases, which tend to create porosity during...
Abstract
Oxide - dispersion - strengthened (ODS) materials utilize extremely fine oxide dispersion for strengthening, such as nickel-base alloys or alumina. The processing techniques employed in the production of ODS alloys produce some entrapped gases, which tend to create porosity during welding that can be rectified by suitable designing considerations. This article discusses certain successful design strategies employed in joining ODS alloys in consideration with the grain structure. It further provides a brief discussion on different welding processes involved in joining ODS materials, namely, gas-tungsten arc welding, gas-metal arc welding, electron-beam and laser-beam welding, resistance welding, furnace brazing, friction welding, and explosion welding.
Book Chapter
Introduction to Special Welding and Joining Topics
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001461
EISBN: 978-1-62708-173-3
... of accomplishing such welding are discussed in the article “Welding of Plastics” in this Section. Oxide-dispersion-strengthened materials provide high creep strength at very high temperatures and thus are used for applications such as gas turbine engines, high-temperature processing components, and so...
Abstract
This is an introductory article to special welding and joining topics focusing on various unique aspects related to three major joining technologies, namely, welding, brazing, and soldering.
Book Chapter
Dispersion-Strengthened Nickel-Base and Iron-Base Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001103
EISBN: 978-1-62708-162-7
... by both an oxide dispersion and γ′ precipitate. Now in its third decade of advancement, mechanical alloying provides a means for producing powder metallurgy (P/M) dispersion-strengthened alloys of widely varying compositions with a unique set of properties. At present, commercial quantities of material...
Abstract
Oxide dispersion-strengthened (ODS) alloys are produced by mechanical alloying, a process by which base metals and alloying particles are powdered together forming a metal-matrix composite. This article discusses the production of ODS superalloy powders and subsequent processing steps, including consolidation, hot rolling, heat treating, and the fabrication of mill products. It also discusses the nominal composition and microstructure of commercial ODS alloys, including nickel, iron, and aluminum-base systems, and provides detailed information on their mechanical, physical, oxidation, and hot-corrosion properties.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001070
EISBN: 978-1-62708-162-7
..., including self-lubricating sintered bearings, structural parts, oxide-dispersion-strengthened copper, sintered metal friction materials, and porous filters. copper powder-metallurgy copper-base structural parts oxide-dispersion-strengthened copper porous bronze filters powder production methods...
Abstract
This article briefly reviews the subject of copper-base powder-metallurgy (P/M) products in terms of powder production methods (atomization, oxide reduction, electrolysis, and hydrometallurgy) and the product properties/consolidation practices of the major applications. Of the four major methods for making copper and copper alloy powders, atomization and oxide reduction are presently practiced on a large scale in North America. The article provides information on the mechanism, production, properties, composition and applications of different types of copper-base P/M products, including self-lubricating sintered bearings, structural parts, oxide-dispersion-strengthened copper, sintered metal friction materials, and porous filters.
Book Chapter
Copper P/M Products
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003135
EISBN: 978-1-62708-199-3
... and nickel silver P/M parts, copper-nickel P/M parts, copper-lead P/M parts, copper-base P/M friction materials, copper-base P/M electrical contact materials, copper-base P/M brush materials, infiltrated parts, and oxide-dispersion-strengthened copper P/M materials. copper alloy powders copper powders...
Abstract
This article discusses the characteristics, properties, and production methods of copper powders and copper alloy powders. Bulk of the discussion is devoted to production and applications of powder metallurgy (P/M) parts, including pure copper P/M parts, bronze P/M parts, brass and nickel silver P/M parts, copper-nickel P/M parts, copper-lead P/M parts, copper-base P/M friction materials, copper-base P/M electrical contact materials, copper-base P/M brush materials, infiltrated parts, and oxide-dispersion-strengthened copper P/M materials.
Book Chapter
Additive Manufacturing of Copper and Copper Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006579
EISBN: 978-1-62708-290-7
... Abstract This article is a detailed account of additive manufacturing (AM) processes for copper and copper alloys such as copper-chromium alloys, GRCop, oxide-dispersion-strengthened copper, copper-nickel alloys, copper-tin alloys, copper-zinc alloys, and copper-base shape memory alloys. The AM...
Abstract
This article is a detailed account of additive manufacturing (AM) processes for copper and copper alloys such as copper-chromium alloys, GRCop, oxide-dispersion-strengthened copper, copper-nickel alloys, copper-tin alloys, copper-zinc alloys, and copper-base shape memory alloys. The AM processes include binder jetting, ultrasonic additive manufacturing, directed-energy deposition, laser powder-bed fusion, and electron beam powder-bed fusion. The article presents a review of the literature and state of the art for copper alloy AM and features data on AM processes and industrial practices, copper alloys used, selected applications, material properties, and where applicable, compares these data and properties to traditionally processed materials. The data presented and the surrounding discussion focus on bulk metallurgical processing of copper components. The discussion covers the composition and performance criteria for copper alloys that have been reported for AM and discusses key differences in process-structure-property relationships compared to conventionally processed material. The article also provides information on feedstock considerations for copper powder handling.
Book Chapter
Machining of Heat-Resistant Alloys
Available to PurchaseBook: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002183
EISBN: 978-1-62708-188-7
... (oxide dispersion strengthened) products are also listed. broaching cobalt-base heat-resistant casting counterboring cutting fluids cutting tools drilling grinding heat-resistant alloys iron-base heat-resistant casting machining milling nickel-base heat-resistant casting alloys planing...
Abstract
This article provides a discussion on cutting tools, their materials and design; cutting fluids; and various aspects of machining operations of heat-resistant alloys, with several examples. Operations such as turning, planing and shaping, broaching, drilling, reaming, counterboring and spotfacing, tapping and thread milling, milling, sawing, and grinding are discussed. Nominal compositions of wrought heat-resistant alloys and nickel-base heat-resistant casting alloys, as well as compositions of cobalt-base heat-resistant casting, iron-base heat-resistant casting, and mechanically alloyed (oxide dispersion strengthened) products are also listed.
Book Chapter
Introduction to Titanium and Titanium Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001080
EISBN: 978-1-62708-162-7
... production and melting processes, oxide dispersion-strengthened alloys by powder metallurgy techniques, titanium-base intermetallic compounds, and titanium-matrix composites. aerospace application automotive application corrosion application developments in titanium processing market developments...
Abstract
Titanium has been recognized as an element with good mechanical and physical properties, alloying characteristics, and corrosion resistance. Providing an outline of general characteristics and types of titanium alloys, this article discusses the contemporary technology of titanium along with its market developments. It also discusses the application of titanium and titanium alloys in corrosive environments and in aerospace and automotive industries. The article describes the developments in titanium processing and materials technologies, which include the development of sponge production and melting processes, oxide dispersion-strengthened alloys by powder metallurgy techniques, titanium-base intermetallic compounds, and titanium-matrix composites.
Image
Effect of dispersions on the hardness of an oxide-dispersion-strengthened (...
Available to PurchasePublished: 01 December 2009
Fig. 8 Effect of dispersions on the hardness of an oxide-dispersion-strengthened (ODS) material as a function of temperature as compared to pure aluminum and 6061 aluminum alloy. Source: Adapted from Ref 28
More
Book Chapter
Refractory Metals and Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003151
EISBN: 978-1-62708-199-3
... to dispersion strengthen the material and to increase the recrystallization temperature above that of pure molybdenum by stabilizing the dislocation structure formed during processing. These alloys are produced in both VAC and P/M grades. Carbide-strengthened alloys were the first molybdenum alloys...
Abstract
The refractory metals include niobium, tantalum, molybdenum, tungsten, and rhenium. They are readily degraded by oxidizing environments at moderately low temperatures. Protective coating systems have been developed, mostly for niobium alloys, to permit their use in high-temperature oxidizing aerospace applications. This article discusses the properties, processing, applications, and classes of refractory metals and its alloys, namely molybdenum, tungsten, niobium, tantalum and rhenium. It also provides an outline of the coating processes used to improve their oxidation resistance.
Book Chapter
Extrusion of Metal Powders
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006085
EISBN: 978-1-62708-175-7
... ) suggested a mechanism whereby the supply of dislocation sources was diminished by extrusion to explain the delay in the onset of creep and the often erratic creep behavior in these early oxide-dispersion-strengthened materials. He further suggested that extrusion or rolling may be essential manufacturing...
Abstract
This article focuses on direct extrusion processing where metal powders undergo plastic deformation, usually at an elevated temperature, to produce a densified and elongated form having structural integrity. It provides information on the basic powder extrusion processes and the mechanics of extrusion. The article also examines specific extrusion practices for the production of wrought material from powder stock and provides examples of materials processed by powder extrusion.
Book Chapter
Aluminum P/M Products
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003129
EISBN: 978-1-62708-199-3
... milling process that produces dispersions of insoluble oxides and carbides that stabilize the microstructure leading to high strength at elevated temperature in the consolidated materials. Despite the advantages of P/M processing for aluminum alloys, their large-scale commercialization has not been...
Abstract
This article provides an overview of the composition and properties of powder metallurgy (P/M) aluminum powders for pressed and sintered parts. It includes the steps involved in the processing of high-performance P/M alloys. The article describes the classes of high-performance P/M alloys, including corrosion-resistant alloys (stress-corrosion cracking), elevated-temperature alloys, and low density/high-stiffness alloys.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001064
EISBN: 978-1-62708-162-7
... SCC resistance (for example, oxide and carbide dispersion strengthening) ( Ref 41 ). Al-905XL is currently the leading mechanically alloyed material under commercialization. The alloy is primarily aimed at forging applications where its attractive strength ( Table 3 ), low density, and good...
Abstract
This article discusses the applications of high-strength aluminum powder metallurgy (P/M) alloys, detailing the advantages, properties, and the various steps involved in P/M technology, including powder production, powder processing, and degassing and consolidation. Three areas of design efforts to push the inherent advantages of aluminum alloys to new limits are also covered: high ambient-temperature strength with improved corrosion and stress corrosion cracking resistance; improved elevated-temperature properties so aluminum alloys can more effectively compete with titanium alloys; and increased stiffness and/or reduced density for aluminum alloys to compete with organic composites. An appendix provides a detailed account of the properties, processing, and applications of conventionally pressed and sintered aluminum P/M alloys.
Book Chapter
Special Metallurgical Welding Considerations for Nickel and Cobalt Alloys and Superalloys
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001425
EISBN: 978-1-62708-173-3
... of exceptionally strong high-temperature metals is the mechanically alloyed materials. These metals combine the high strength of the precipitation-hardened alloys by use of γ′ strengthening up to about 705 °C (1300 °F) with dispersion strengthening with yttrium oxide (Y 2 O 3 ) up to 1315 °C (2400 °F...
Abstract
The process of making assemblies of solid-solution and precipitation hardening groups of alloys and superalloys often requires welding of dissimilar metals, welding of diffusion-bonded materials, and sometimes weld overlay cladding and even thermal spraying that in turn requires special knowledge and treatments developed specifically for each material. This article emphasizes the special metallurgical welding considerations for welding solid-solution and precipitation hardening nickel alloys, cobalt alloys, and superalloys.
Book Chapter
Forging of Refractory Metals
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003994
EISBN: 978-1-62708-185-6
... of “overheating” the metal; forging can usually be continued at as low a temperature as will allow the material to continue deforming. Some hammer forging operations have been performed at maximum temperatures near 760 °C (1400 °F). The oxide-dispersion-strengthened alloys typically are forged at about the same...
Abstract
This article focuses on the forging characteristics of different types of refractory metals and alloys, namely, niobium and niobium alloys, molybdenum and molybdenum alloys, tantalum and tantalum alloys, and tungsten and tungsten alloys.
Book Chapter
Selection and Weldability of Dispersion-Strengthened Aluminum Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001419
EISBN: 978-1-62708-173-3
... ). In view of the above properties, these dispersion-strengthened aluminum alloys are considered candidate materials to replace conventional high-strength aluminum alloys and titanium alloys used in the manufacture of selected aerospace components such as fan and compressor cases; vanes and blades in gas...
Abstract
Conventional high-strength aluminum alloys produced via powder metallurgy (P/M) technologies, namely, rapid solidification (RS) and mechanical alloying (mechanical attrition) have high strength at room temperature and elevated temperature. This article focuses on the metallurgy and weldability of dispersion-strengthened aluminum alloys based on the aluminum-iron system that are produced using various RS-P/M processing techniques. It describes weldability issues related to weld solidification behavior, the formation of hydrogen-induced porosity in the weld zone, and the high-temperature deformation behavior of these alloys, which affect the selection and application of fusion and solid-state welding processes. The article provides specific examples of material responses to welding conditions and highlights the microstructural development in the weld zone.
Book Chapter
Introduction to Full Density Powder Metallurgy
Available to PurchaseBook: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006142
EISBN: 978-1-62708-175-7
... isostatically press; HIP+F, hot isostatically press and forge. Source: Ref 1 Dispersion strengthened alloys, which typically contain very fine dispersoids, such as oxides, in a metallic matrix can be produced only by hot consolidation of powder. Melting of these materials will lead to separation...
Abstract
This article provides a basic introduction to the various aspects of full density powder metallurgy, including properties, applications, processing methods, and process parameters.
Book Chapter
Brazing of Heat-Resistant Alloys, Low-Alloy Steels, and Tool Steels
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001453
EISBN: 978-1-62708-173-3
..., and fixturing. The article also provides an overview of the brazing of blow-alloy steels and tool steels and oxide dispersion-strengthened alloys. brazing brazing filler metals cobalt-base alloys fixturing heat-resistant alloys low-alloy steels nickel-base alloys oxide dispersion-strengthened...
Abstract
This article focuses primarily on the various steps involved in the brazing of heat-resistant alloys (nickel- and cobalt-base alloys). The major steps include the selection of brazing filler metals, surface cleaning and preparation, brazing processes and their corresponding atmospheres, and fixturing. The article also provides an overview of the brazing of blow-alloy steels and tool steels and oxide dispersion-strengthened alloys.
Book Chapter
General Welding Characteristics of High-Temperature Materials
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001422
EISBN: 978-1-62708-173-3
.... Strengthening of these alloys is achieved by the precipitation of a finely dispersed age-hardening constituent in the matrix of the alloy and/or by the addition of solid-solution-strengthening alloy additions in the matrix. In addition, the strength of these materials can be significantly increased by careful...
Abstract
This article addresses the general welding characteristics common to both solid-solution-strengthened and precipitation-hardened nickel-, iron-, and cobalt alloys.
Book Chapter
Modeling of Tensile Properties
Available to PurchaseSeries: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005455
EISBN: 978-1-62708-196-2
... strengthening mechanism is lost, resulting in a significant reduction in hardness. However, the ODS alloy remains stronger at elevated temperatures ( Ref 28 ). Fig. 8 Effect of dispersions on the hardness of an oxide-dispersion-strengthened (ODS) material as a function of temperature as compared to pure...
Abstract
A computational tool would require the contribution of the strengthening mechanisms of metallic material to be predicted and then summed in an appropriate way to derive an estimate of the tensile properties. This article focuses on the modeling of deformation mechanisms pertinent to structural materials, namely, solid-solution strengthening, age/precipitation hardening, dispersion strengthening, grain size reduction, strengthening from cold work, and strengthening from interfaces. It explains the application of predictive models in the atomistic modeling of dislocation structures and cast aluminum property prediction. The article concludes with information on the use of rules-based approaches and data-mining techniques for quantitative predictions of tensile properties.
1