Skip Nav Destination
Close Modal
By
Luiz Carlos Casteletti, Amadeu Lombardi Neto, George E. Totten
By
Z. Kolozsváry
By
Jan Elwar, Ralph Hunger
By
E.J. Mittemeijer
By
K.-M. Winter, J. Kalucki
By
Edward Roliński
Search Results for
Nitriding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1283
Search Results for Nitriding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006273
EISBN: 978-1-62708-169-6
... Abstract Aluminum and its alloys are characterized by their low hardness and less satisfactory tribological performance. These limits can be overcome by means of load-specific surface engineering. This article provides information on the structure and properties of nitrided layers...
Abstract
Aluminum and its alloys are characterized by their low hardness and less satisfactory tribological performance. These limits can be overcome by means of load-specific surface engineering. This article provides information on the structure and properties of nitrided layers, and the technologies and mechanisms used for nitriding aluminum and its alloys. It also describes the nitriding behavior of aluminum alloys. The article concludes by describing how a combination of technologies can be utilized to achieve aluminum nitride with the highest tribological properties.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006269
EISBN: 978-1-62708-169-6
... Abstract This article describes the nitriding methods of titanium alloys such as plasma nitriding and gas nitriding. It focuses on the interaction of titanium alloys, interaction of titanium with nitrogen, and the interaction of titanium with oxygen, carbon, and hydrogen. The article provides...
Abstract
This article describes the nitriding methods of titanium alloys such as plasma nitriding and gas nitriding. It focuses on the interaction of titanium alloys, interaction of titanium with nitrogen, and the interaction of titanium with oxygen, carbon, and hydrogen. The article provides information on the wear and fatigue properties and corrosion resistance of nitrided titanium alloys, as well as the effect of nitriding on the biocompatibility of titanium. It also compares plasma-nitrided titanium alloys with alloy steels. It concludes with a short discussion on the effect of nitriding on the surface properties of titanium and two-phase α + β alloys.
Book Chapter
Nitriding of Stainless Steels
Available to PurchaseSeries: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005977
EISBN: 978-1-62708-168-9
... of an effective protective passive layer in stainless steels. It discusses hardness, fatigue and fretting properties, tribological properties, wear resistance, and corrosion-wear process of the S-phase layer. The article describes two thermochemical nitriding techniques of stainless steels: plasma-assisted...
Abstract
Stainless steels are essential for the modern industrial civilization because of their corrosion resistance, especially in the chemical, petrochemical, and food industries. This article discusses the classification of the various types of stainless steels, including martensitic, ferritic, austenitic, duplex (ferritic-austenitic), and precipitation-hardening stainless steels. It presents a checklist of characteristics to be considered in selecting the proper type of stainless steel for a specific application. The article also outlines the need to promote the formation of an effective protective passive layer in stainless steels. It discusses hardness, fatigue and fretting properties, tribological properties, wear resistance, and corrosion-wear process of the S-phase layer. The article describes two thermochemical nitriding techniques of stainless steels: plasma-assisted nitriding techniques and non-plasma assisted nitriding processes. It also describes the difficulties in stainless steel nitriding/carburizing.
Book Chapter
Nitriding Structure and Properties of Nitrided Layers
Available to PurchaseSeries: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005986
EISBN: 978-1-62708-168-9
... Abstract Nitriding is a general term for all processes based on the addition of nitrogen to the surface of steel. When carbon is added along with the nitrogen, the process is called nitrocarburizing. This article provides a detailed discussion on the functional and structural properties...
Abstract
Nitriding is a general term for all processes based on the addition of nitrogen to the surface of steel. When carbon is added along with the nitrogen, the process is called nitrocarburizing. This article provides a detailed discussion on the functional and structural properties of nitrided layers. It describes the structural changes on the surface of carbon steels, alloy steels, and austenitic stainless steels. The article explains the effects of the various nitriding processes, namely, gaseous nitriding, plasma nitriding, gaseous nitrocarburizing, and salt bath nitrocarburizing, on the structure and properties of nitrided layers.
Book Chapter
Plasma (Ion) Nitriding and Nitrocarburizing of Steels
Available to PurchaseSeries: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005791
EISBN: 978-1-62708-165-8
... Abstract Plasma (ion) nitriding is a method of surface hardening using glow-discharge technology to introduce nascent (elemental) nitrogen to the surface of a metal part for subsequent diffusion into the material. This article describes the procedures and applications of plasma nitriding...
Abstract
Plasma (ion) nitriding is a method of surface hardening using glow-discharge technology to introduce nascent (elemental) nitrogen to the surface of a metal part for subsequent diffusion into the material. This article describes the procedures and applications of plasma nitriding methods of steel. These methods include direct-current plasma nitriding, pulsed-current plasma nitriding, and active-screen plasma nitriding. The article reviews cold-walled and hot-walled furnaces used for plasma nitriding. It provides information on the importance of controlling three process parameters: atmosphere, pressure, and part temperature. The article includes a discussion on the influence of nitrogen concentration on case structure formation on nitrided steel, and explains the significance of microstructure, hardness, and fatigue strength on nitrided case. It also discusses processing, laboratory studies, and applications of nitrocarburizing of steel.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005776
EISBN: 978-1-62708-165-8
... Abstract The liquid nitriding process has several proprietary modifications and is applied to a wide variety of carbon steels, low-alloy steels, tool steels, stainless steels, and cast irons. This article discusses the applications, subclassifications, operating procedures, and maintenance...
Abstract
The liquid nitriding process has several proprietary modifications and is applied to a wide variety of carbon steels, low-alloy steels, tool steels, stainless steels, and cast irons. This article discusses the applications, subclassifications, operating procedures, and maintenance procedures, as well as the equipment used (salt bath furnaces) and safety precautions to be undertaken during the liquid nitriding process. It describes the different types of liquid nitriding process, namely, liquid pressure nitriding, aerated bath nitriding, and liquid nitrocarburizing. Environmental considerations and the increased cost of detoxification of cyanide-containing effluents have led to the development of low-cyanide salt bath nitrocarburizing treatments. The article reviews the wear and antiscuffing characteristics of the compound zone produced in salt baths with the help of Falex scuff test.
Book Chapter
Fundamentals of Nitriding and Nitrocarburizing
Available to PurchaseSeries: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005818
EISBN: 978-1-62708-165-8
... Abstract The nitriding process typically involves the introduction of nitrogen into the surface-adjacent zone of a component, usually at a temperature between 500 and 580 deg C. This article provides an overview of the essential aspects of the thermodynamics and kinetics of nitriding...
Abstract
The nitriding process typically involves the introduction of nitrogen into the surface-adjacent zone of a component, usually at a temperature between 500 and 580 deg C. This article provides an overview of the essential aspects of the thermodynamics and kinetics of nitriding and nitrocarburizing of iron-base materials with gaseous processes. It describes nitriding potentials and the Lehrer diagram, carburizing potentials, controlled nitriding and nitrocarburizing, and the microstructural evolution of the compound layer and the diffusion zone.
Book Chapter
Gas Nitriding and Gas Nitrocarburizing of Steels
Available to PurchaseSeries: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005806
EISBN: 978-1-62708-165-8
... Abstract This article summarizes the terminology for gas reactions, and discusses low-temperature nitriding and nitrocarburizing of stainless steels. It describes the various nitriding processes, namely, high- and low-pressure nitriding, oxynitriding, sulfonitriding, oxysulfonitriding, ferritic...
Abstract
This article summarizes the terminology for gas reactions, and discusses low-temperature nitriding and nitrocarburizing of stainless steels. It describes the various nitriding processes, namely, high- and low-pressure nitriding, oxynitriding, sulfonitriding, oxysulfonitriding, ferritic nitrocarburizing and austenitic nitrocarburizing. The article includes a discussion on the difficulties in specimen cleaning, importance of furnace purge, uses of pre and post oxidation, depassivation, or activation, and requirements for perfect nucleation in nitriding process. In nitriding, the successful atmosphere control depends on various potentials. The article summarizes the methods of measuring potentials in nitriding and nitrocarburizing, provides useful information on the furnaces used, and the safety precautions to be followed in the nitriding process. It also describes the sample preparation procedures and testing methods to ensure the quality of the sample.
Book Chapter
Practical Aspects of Sputtering and Its Role in Industrial Plasma Nitriding
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0007039
EISBN: 978-1-62708-170-2
... Abstract Sputtering is a nonthermal vaporization process in which atoms are ejected from the surface of a solid by momentum transfer from energetic particles of atomic or molecular size. Ionized gases in plasma nitriding chambers often possess enough energy to sputter atoms from workload...
Abstract
Sputtering is a nonthermal vaporization process in which atoms are ejected from the surface of a solid by momentum transfer from energetic particles of atomic or molecular size. Ionized gases in plasma nitriding chambers often possess enough energy to sputter atoms from workload, fixturing, and racking surfaces that are then redeposited to the benefit or detriment of the nitriding process. This article explains how and why sputtering occurs during plasma nitriding and how to recognize and control its effects. It reviews the factors that influence the intensity of sputtering and its effects, whether positive or negative, on treated parts. It also provides recommendations for improving outcomes when nitriding titanium alloys, ferrous metals, particularly stainless steels, and components with complex geometries.
Image
Comparison of the nitriding characteristics of series 300 and 400 stainless...
Available to PurchasePublished: 01 January 1994
Fig. 6 Comparison of the nitriding characteristics of series 300 and 400 stainless steels, single-stage nitrided at 525 and 550 °C (975 and 1025 °F)
More
Image
Surface (case) and core hardness as functions of ion nitriding time and tem...
Available to PurchasePublished: 01 January 1994
Fig. 8 Surface (case) and core hardness as functions of ion nitriding time and temperature for 18Ni (300) maraging steel. Source: Ref 20
More
Image
Plasma nitriding of a large stamping die. The bar in the center has anodic ...
Available to Purchase
in Practical Aspects of Sputtering and Its Role in Industrial Plasma Nitriding
> Surface Engineering
Published: 01 January 1994
Fig. 1 Plasma nitriding of a large stamping die. The bar in the center has anodic polarization. Courtesy of Advanced Heat Treat Corporation
More
Image
in Practical Aspects of Sputtering and Its Role in Industrial Plasma Nitriding
> Surface Engineering
Published: 01 January 1994
Fig. 3 Plasma nitriding experiment with 59 Fe isotopes. Illustrated is the position of the 59 Fe isotope sample in the main iron sample during plasma nitriding. Adapted from Ref 6 , 8
More
Image
Original autoradiogram of main iron sample No. 3 after plasma nitriding. Th...
Available to Purchase
in Practical Aspects of Sputtering and Its Role in Industrial Plasma Nitriding
> Surface Engineering
Published: 01 January 1994
Fig. 4 Original autoradiogram of main iron sample No. 3 after plasma nitriding. The intensity grows with the amount of 59 Fe isotope transferred from the central sample. Nitriding conditions: 550 °C (1020 °F), NH 3 , 2.5 mbar, 3 h. Source: Ref 6
More
Image
Plasma nitriding of a gear. Note the more intense glow discharge in between...
Available to Purchase
in Practical Aspects of Sputtering and Its Role in Industrial Plasma Nitriding
> Surface Engineering
Published: 01 January 1994
Fig. 12 Plasma nitriding of a gear. Note the more intense glow discharge in between the teeth. Courtesy of Advanced Heat Treat Corporation
More
Image
Nitriding response of two steels contaminated by cutting oil and nitrided f...
Available to PurchasePublished: 01 August 2013
Fig. 1 Nitriding response of two steels contaminated by cutting oil and nitrided for 4 h at 520 °C (970 °F) with a nitriding potential of 10. Contaminated surfaces are pretreated at between 300 and 400 °C (570 and 750 °F) (preoxidation in air, followed by treatment in nitrogen or a mixture
More
Image
Influence of alloying elements on (a) hardness after nitriding (base alloy,...
Available to PurchasePublished: 01 August 2013
Fig. 8 Influence of alloying elements on (a) hardness after nitriding (base alloy, 0.35% C, 0.30% Si, 0.70% Mn) and (b) depth of nitriding measured at 400 HV (nitriding for 8 h at 520 °C, or 970 °F). Source: Ref 6
More
Image
Published: 01 August 2013
Fig. 3 Tool parts coated with stop-off paint (Condursal N633) prior to nitriding
More
Image
Effect of nitriding and shot peening on fatigue behavior. Comparison betwee...
Available to Purchase
in Fatigue Resistance of Steels
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 19 Effect of nitriding and shot peening on fatigue behavior. Comparison between fatigue limits of crankshafts ( S-N bands) and fatigue limits of separate test bars, which are indicated by plotted points at right. Steel was 4340.
More
Image
Treatment of rinses from nitriding operations. ORP, oxidation-reduction pot...
Available to PurchasePublished: 01 August 2013
Fig. 13 Treatment of rinses from nitriding operations. ORP, oxidation-reduction potential Ref 9
More
1