Skip Nav Destination
Close Modal
By
António M. dos Santos, Melanie Kirkham, Christina Hoffmann
By
M.E. Bunker, M.M. Minor, S.R. Garcia
By
R.L. Klueh
Search Results for
Neutrons
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 311
Search Results for Neutrons
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001765
EISBN: 978-1-62708-178-8
... Abstract Neutrons are a principal tool for the study of lattice vibrational spectra in materials. This article provides a detailed account of fission and spallation methods of neutron production that are capable of producing sufficient intensity to be useful in neutron scattering research...
Abstract
Neutrons are a principal tool for the study of lattice vibrational spectra in materials. This article provides a detailed account of fission and spallation methods of neutron production that are capable of producing sufficient intensity to be useful in neutron scattering research. It describes the instrumentation required for, and advancements made in, neutron powder diffraction. The article further explains the texture and residual stress (macrostresses and microstresses) problems that are analyzed using the neutron powder diffraction method. It also outlines the single-crystal neutron diffraction technique, and provides examples of the applications of neutron diffraction.
Book Chapter
Neutron Diffraction
Available to PurchaseSeries: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006667
EISBN: 978-1-62708-213-6
... Abstract This article provides a brief introduction to neutron diffraction as well as its state-of-the-art capabilities. The discussion covers the general principles of the neutron, neutron-scattering theory, generation of neutrons, types of incident radiation, and purposes of single-crystal...
Abstract
This article provides a brief introduction to neutron diffraction as well as its state-of-the-art capabilities. The discussion covers the general principles of the neutron, neutron-scattering theory, generation of neutrons, types of incident radiation, and purposes of single-crystal neutron diffraction, powder diffraction, and pair distribution function analysis. The relationship between detector space and reciprocal space are presented. Various factors involved in sample preparation, calibration, and techniques used for analyzing diffraction data are described. The article also presents application examples and possible future developments in neutron diffraction.
Book Chapter
Neutron Activation Analysis
Available to PurchaseSeries: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001748
EISBN: 978-1-62708-178-8
... Abstract Neutron activation analysis (NAA) is a highly sensitive and accurate method of assaying bulk materials for trace levels of many elements. This article provides a detailed account on several types of NAA, namely, nondestructive and radiochemical thermal neutron activation, delayed...
Abstract
Neutron activation analysis (NAA) is a highly sensitive and accurate method of assaying bulk materials for trace levels of many elements. This article provides a detailed account on several types of NAA, namely, nondestructive and radiochemical thermal neutron activation, delayed neutron counting, epithermal and 14-MeV fast neutron activation, and prompt gamma activation analysis. It also includes application examples, explaining where and how each method is used and the types of elements on which they are effective.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006642
EISBN: 978-1-62708-213-6
... Abstract This article provides a detailed account of the concepts and applications of neutron activation analysis (NAA), covering the basic principles and neutron reactions of NAA as well as calibration methods used for NAA. The discussion also covers the factors pertinent to analytical...
Abstract
This article provides a detailed account of the concepts and applications of neutron activation analysis (NAA), covering the basic principles and neutron reactions of NAA as well as calibration methods used for NAA. The discussion also covers the factors pertinent to analytical sensitivity achievable with NAA, common neutron sources, sample-handling technique, and automated systems of NAA. The categories of NAA covered are instrumental neutron activation analysis, epithermal neutron activation analysis, radiochemical neutron activation analysis, 14 MeV fast neutron activation analysis, delayed neutron activation analysis, and prompt gamma activation analysis.
Book Chapter
Effect of Neutron Irradiation on Properties of Steels
Available to PurchaseSeries: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001036
EISBN: 978-1-62708-161-0
... Abstract Damage to steels from neutron irradiation affects the properties of steels and is an important factor in the design of safe and economical components for fission and fusion reactors. This article discusses the effects of high-energy neutrons on steels. The effects of damage caused...
Abstract
Damage to steels from neutron irradiation affects the properties of steels and is an important factor in the design of safe and economical components for fission and fusion reactors. This article discusses the effects of high-energy neutrons on steels. The effects of damage caused by neutron irradiation include swelling (volume increase), irradiation hardening, and irradiation embrittlement (the influence of irradiation hardening on fracture toughness). These effects are primarily associated with high-energy (greater than 0.1 MeV) neutrons. Consequently, irradiation damage from neutrons is of considerable importance in fast reactors, which produce a significant flux of high-energy neutrons during operation. Irradiation embrittlement must also be considered in the development of ferritic steels for fast reactors and fusion reactors. Although ferritic steels are more resistant to swelling than austenitic steels, irradiation may have a more critical effect on the mechanical properties of ferritic steels.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001763
EISBN: 978-1-62708-178-8
..., desmearing parameters, and the types of scattering curves are illustrated. ceramics ferrous metals metallic glass nonferrous metals polymers small-angle neutron scattering small-angle X-ray diffraction Overview Introduction Small-angle x-ray scattering (SAXS) and small-angle neutron...
Abstract
This article presents the experimental and theoretical aspects of small-angle scattering, and discusses specific applications used in the characterization of metals, glasses, polymers, and ceramics. The basic methods of collimating x-rays, the cause of smearing from a line source, desmearing parameters, and the types of scattering curves are illustrated.
Image
γ-ray spectrum of a neutron-irradiated ore sample from the Jemez mountains,...
Available to PurchasePublished: 01 January 1986
Fig. 1 γ-ray spectrum of a neutron-irradiated ore sample from the Jemez mountains, New Mexico, recorded using a Ge(Li) detector five days after irradiation. The lower figure is an expanded view of Detail A in the upper figure. The necessity of high resolution is evident from the proximity
More
Image
γ-ray spectra of a neutron-irradiated NBS fly ash sample showing the change...
Available to PurchasePublished: 01 January 1986
Fig. 2 γ-ray spectra of a neutron-irradiated NBS fly ash sample showing the change that occurs as a function of time. The upper spectrum was recorded in the time interval 18 to 27 min after irradiation; the lower spectrum is a 2-h count recorded after 20 days of decay. None of the peaks
More
Image
γ-ray spectrum of a neutron-irradiated high-purity nickel sample. The spect...
Available to PurchasePublished: 01 January 1986
Fig. 3 γ-ray spectrum of a neutron-irradiated high-purity nickel sample. The spectrum, recorded in the time interval 3 to 8 min after a 20-s irradiation, shows the presence of titanium, manganese, and vanadium in the sample.
More
Image
Comparison of γ-ray spectrums. Upper spectrum shows a neutron-irradiated ro...
Available to PurchasePublished: 01 January 1986
Fig. 5 Comparison of γ-ray spectrums. Upper spectrum shows a neutron-irradiated rock sample that contains 3 ppb iridium (26 days decay). Lower spectrum shows the chemically isolated iridium fraction (pure 74.2-d 192 Ir).
More
Image
Schematic diagram of a neutron powder diffractometer equipped with a multid...
Available to PurchasePublished: 01 January 1986
Fig. 1 Schematic diagram of a neutron powder diffractometer equipped with a multidetector bank. M, monochromator
More
Image
Time-of-flight single-crystal diffractometer at a pulsed neutron source. De...
Available to PurchasePublished: 01 January 1986
Fig. 4 Time-of-flight single-crystal diffractometer at a pulsed neutron source. Detector is usually fixed at 90° 2θ, and diffraction is recorded in Laue's geometry. The sample (a single crystal) is positioned by Eulerian angle motions.
More
Image
Furnace designed for single-crystal neutron diffraction. Note that the beam...
Available to PurchasePublished: 01 January 1986
Fig. 5 Furnace designed for single-crystal neutron diffraction. Note that the beam readily penetrates the platinum foil heat shield. Source: Ref 14
More
Image
Effect of neutron irradiation on fracture mode and fracture toughness of th...
Available to PurchasePublished: 01 January 1987
Fig. 823 Effect of neutron irradiation on fracture mode and fracture toughness of the iron-nickel-base superalloy A-286 (UNS S66286). The plot of fracture toughness versus neutron exposure charts the degradation of K Ic with increased irradiation. Note the fracture-mode transition from
More
Image
Atom map of the solute distribution in a neutron-irradiated pressure vessel...
Available to PurchasePublished: 01 December 2004
Fig. 33 Atom map of the solute distribution in a neutron-irradiated pressure vessel steel in which each sphere represents the position of an individual atom. The iron atoms are omitted for clarity. Three nanometer-sized copper-enriched precipitates are visible on either side of a lath boundary
More
Image
Gamma-ray spectrum of a neutron-irradiated ore sample from the Jemez Mounta...
Available to PurchasePublished: 15 December 2019
Fig. 1 Gamma-ray spectrum of a neutron-irradiated ore sample from the Jemez Mountains, New Mexico, recorded using a high-resolution detector five days after irradiation. The lower figure is an expanded view of detail A in the upper figure. The necessity of high resolution is evident from
More
Image
Gamma-ray spectra of a neutron-irradiated National Institute of Standards a...
Available to PurchasePublished: 15 December 2019
Fig. 2 Gamma-ray spectra of a neutron-irradiated National Institute of Standards and Technology standard reference material 1633a fly ash sample showing the change that occurs as a function of time. The upper spectrum was recorded in the time interval 18 to 27 min after irradiation; the lower
More
Image
Gamma-ray spectrum of a neutron-irradiated high-purity nickel sample. The s...
Available to PurchasePublished: 15 December 2019
Fig. 3 Gamma-ray spectrum of a neutron-irradiated high-purity nickel sample. The spectrum, recorded in the time interval 3 to 8 min after a 20 s irradiation, shows the presence of titanium, manganese, and vanadium in the sample.
More
Image
Comparison of γ-ray spectra. Upper spectrum shows a neutron-irradiated rock...
Available to PurchasePublished: 15 December 2019
Fig. 5 Comparison of γ-ray spectra. Upper spectrum shows a neutron-irradiated rock sample that contains 3 ng · g −1 iridium (26 d decay). Lower spectrum shows the chemically isolated iridium fraction ( 192 Ir, t 1/2 = 74.2 d)
More
Image
Historical evolution of the available thermal neutron flux. For pulsed sour...
Available to PurchasePublished: 15 December 2019
Fig. 1 Historical evolution of the available thermal neutron flux. For pulsed sources, peak flux is reported. Reactor sources output has remained largely constant since the 1960s, while major advances have been based on spallation. Early sources are shown as red diamonds, reactor sources
More
1