1-20 of 22 Search Results for

Nernst equation

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003579
EISBN: 978-1-62708-182-5
... Nernst equation. It describes galvanic cell reactions and corrosion reactions in an aqueous solution in an electrochemical cell. The article explores the most common cathodic reactions encountered in metallic corrosion in aqueous systems. The reactions included are proton reduction, water reduction...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003580
EISBN: 978-1-62708-182-5
... Abstract A potential pH diagram is a graphical representation of the relations, derived from the Nernst equation, between the pH and the equilibrium potentials (E) of the most probable electrochemical reactions occurring in a solution containing a specific element. This article describes three...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003583
EISBN: 978-1-62708-182-5
... Abstract This article provides a general introduction to the kinetics of aqueous corrosion with an emphasis on electrochemical principles. It describes the thermodynamic basis for corrosion by determining the equilibrium potentials of electrochemical reactions from the Nernst equation. A...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003589
EISBN: 978-1-62708-182-5
... analyzed in solids, the diffusivities change many orders of magnitude, D ∈ (10 −18 to 10 −6 , cm 2 / s). Other flux formula were proposed by Nernst- Planck, Onsager, Darken, and others. The Nernst-Planck flux formula is common in electrochemistry and was used by Wagner to analyze the mass transport...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001744
EISBN: 978-1-62708-178-8
... transfer in an electrolysis reaction is large compared to the rate of mass transport and there are no complicating side reactions, the extent of the electrolysis reaction as a function of potential can be expressed by a form of the Nernst equation. Such processes are generally known in electrochemistry as...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003592
EISBN: 978-1-62708-182-5
... the SHE is, from the Nernst equation (Eq 25 of the article “Electrode Potentials” in this Section of the volume): (Eq 1) E eq ( H + / H 2 ) = E ( H + / H 2 ) o + R T F ln a H + f H 2 where R is the...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006522
EISBN: 978-1-62708-207-5
... Nernst Equation ( Eq 10 ) can be used to calculate half-cell potentials that deviate from standard state: (Eq 9) aA + mH + + ne − = bB + dH 2 O (Eq 10) E = E o + 2.3 R T n F log ( A ) a ( H + ) m ( B ) b...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006679
EISBN: 978-1-62708-213-6
... using the Nernst equation ( Eq 3 ). For a cell reaction (M n + + ne − → M) occurring at 25 °C (75 °F), the required potential ( E ) is: (Eq 11) E = E ∗ + 0.0591 n log M + where E * is the potential of the reference electrode. Therefore, the voltage becomes more negative...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004101
EISBN: 978-1-62708-184-9
... be dissolved oxygen, which is then reduced. It is not clear what factors influence the distribution of anodic and cathodic areas on the surfaces of pipes. The Nernst equation is commonly used to describe redox reactions theoretically, but its practical use is limited. See the articles “Electrode...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003604
EISBN: 978-1-62708-182-5
... metal ion, a , is given by the Nernst equation: (Eq 3) E rev = E o − ( 2.303 R T / n F )   log   a where R is gas constant; F is the Faraday constant, 96,500 C/gram-equivalent; T is the absolute temperature, K; and n is the number of electrons involved in the...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001742
EISBN: 978-1-62708-178-8
... depends on the technique used. Determining the voltage of the cell necessary to achieve the required separation requires knowing the reactions that occur at each electrode. The potential of each electrode ( E ) may then be calculated using the Nernst equation: (Eq 1) E = E 0 − R T n...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003830
EISBN: 978-1-62708-183-2
... is an electrochemical process in which zinc is oxidized with simultaneous reduction of hydrogen ions or dissolved oxygen in the electrolyte. The oxidation follows the reaction: (Eq 1) Zn → Zn 2 + + 2 e − The chemical potential Nernst equation is: (Eq 2) E 0...
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006483
EISBN: 978-1-62708-207-5
... product. The Nernst equation relates the potential values of the concentration gradient to the electric gradient that balances it. An equilibrium situation arises where the chemical concentration gradient, which at first causes ions to move from the region of high concentration to the region of low...
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003584
EISBN: 978-1-62708-182-5
...: (Eq 6) i = z F k 0 { C red i exp ( α z F R T ( E − E 0 ) )   − C ox i exp ( − ( 1 − α ) z F R T ( E − E 0 ) ) } This equation gives the expression (Nernst law) of the equilibrium...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004147
EISBN: 978-1-62708-184-9
... a parabolic or cubic relation, however over a much shorter period, which repeats itself throughout the subsequent oxidation process. The pretransition kinetics can be described by the equation, w ( t )= At n , where w ( t ) is the weight gain, t is the exposure time, and A and n are...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.9781627082136
EISBN: 978-1-62708-213-6
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002471
EISBN: 978-1-62708-194-8
... (and, therefore, E 0 ) is used to define Δ G under standard conditions, an overall relationship, known as the Nernst equation, can be formulated for the Ni 2+ /Ni reaction: (Eq 14) E = E 0 + RT n F   ln ( a Ni 2 + ) = E 0 + 0.03   log ( a Ni...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.9781627081788
EISBN: 978-1-62708-178-8
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006223
EISBN: 978-1-62708-163-4
... system in equilibrium with its surroundings, the change in entropy is defined as: (Eq 3) d S = Q T = d E + P d V T A principle advanced by Theodore Richards, Walter Nernst, Max Planck, and others, often called the Third Law of Thermodynamics, states that the entropy of all...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003085
EISBN: 978-1-62708-199-3
... = δ Q T = d E + P d V T A principle advanced by Theodore Richards, Walter Nernst, Max Planck, and others, often called the Third Law of Thermodynamics, states that “the entropy of all chemically homogeneous materials can be taken as zero at absolute zero temperature” (0 K...