Skip Nav Destination
Close Modal
Search Results for
Master alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 315 Search Results for
Master alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2008
Image
Published: 30 November 2018
Image
Published: 30 August 2021
Image
Published: 01 December 2008
Fig. 18 Micrograph of an Al-6Ti master alloy illustrating the range of size and shape of Al 3 Ti particles
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005207
EISBN: 978-1-62708-187-0
... analysis techniques for assessing grain-refining characteristics during master alloy processing. casting heterogeneous nucleation homogeneous nucleation nucleation kinetics solidification free growth model carbide-boride model grain refinement model constitutional undercooling model...
Abstract
This article discusses selected highlights of thermodynamic relationships during solidification and nucleation kinetics behavior in connection with the basis of nucleation treatments, such as grain refinement and inoculation, to provide a summary of nucleation phenomena during casting. The article describes nucleation phenomenon such as homogeneous nucleation and heterogeneous nucleation. It examines various grain refinement models, such as the carbide-boride model, the free growth model, and the constitutional undercooling model. The article concludes with information on the thermal analysis techniques for assessing grain-refining characteristics during master alloy processing.
Image
Published: 30 September 2015
Fig. 10 Comparison of the room-temperature fatigue life scatter bands of blended elemental (BE) and prealloyed (PA) Ti-6Al-4V compacts to that of a mill-annealed ingot metallurgy (IM) alloy. Blended elemental alloys were consolidated from chlorine-containing sponge fines blended with master
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005302
EISBN: 978-1-62708-187-0
... phase diagram. Source: Ref 5 The best explanation was given in 1983 by Backerud ( Ref 6 ). Figure 3 is taken from his paper and shows schematically what happens. Titanium additions are made via aluminum master alloys, which contain between 5 and 10% Ti. These materials contain numerous...
Abstract
Grain refinement in aluminum casting alloys tends to reduce the amount of porosity and the size of the pores and to improve mechanical properties, especially fatigue strength. This article provides information on measurement of grain size in alloys and describes the mechanisms of grain refinement in aluminum casting alloys. It reviews the use of boron and titanium as a grain refiner for aluminum casting alloys. The article discusses the best practices for grain refinement in various aluminum casting alloys. These include aluminum-silicon casting alloys, aluminum-silicon-copper casting alloys, aluminum-silicon-copper casting alloys, aluminum-zinc-magnesium casting alloys, and aluminum-magnesium casting alloys. The article also examines the benefits of grain refinement in aluminum casting alloys.
Image
Published: 30 September 2015
Fig. 8 3D laser scanning results that depict differences in sintering-induced distortion within Al-2.3Cu-1.6Mg modified with (a) no zirconium and 0.2% zirconium sourced as a (b) master alloy powder and (c) prealloyed addition. Source: Ref 48
More
Image
Published: 01 December 2008
Fig. 10 The influence of holding time after the introduction of a grain-refiner master alloy on the degree of grain refinement. The period A-B represents the contact time, the period B-C refers to a fading process, and the period C-D refers to a recovery process.
More
Image
Published: 30 September 2015
Fig. 8 Sequence of direct consolidation of the blended elemental (BE) powder-based mill product processing steps. (a) Raw TiH 2 was powder blended with a master alloy for Ti-6Al-4V composition, then cold isostatically pressed (CIPed) at 448 MPa (65 ksi) pressure. The green compacts are vacuum
More
Image
Published: 30 September 2015
process. (d) Titanium hydride powder produced by the ADMA process. (e) and (f) The powder in (d) milled down to –100 mesh, uniform size TiH 2 powder for master alloy blending, cold isostatic pressing (CIP), and vacuum sintering into titanium powder billets
More
Image
Published: 01 December 2008
Fig. 20 Representative types of cooling curves for an aluminum melt treated with different master alloys to yield varying levels of grain refinement. A, high degree of grain refinement coincides with Al 3 Ti crystals present in melt; B, poor grain refinement due to few Al 3 Ti crystals in melt
More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003686
EISBN: 978-1-62708-182-5
... material then diffuses into the substrate with subsequent modification of the substrate microstructure. A typical pack ( Fig. 1 ) ( Ref 8 ) consists of: Filler Master alloy Activator salt Substrate to be coated Powders of the filler, master alloy, and activator are blended together...
Abstract
This article focuses on the pack-cementation coatings, in particular, halide-activated pack cementation coatings on nickel alloys. It also describes the thermodynamics and kinetics of, and simultaneous deposition of various types of, pack cementation processes. These include pack aluminizing, chromizing, and siliconizing.
Book Chapter
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005775
EISBN: 978-1-62708-165-8
... in the articles “Boriding (Boronizing) of Metals” and “Thermoreactive Deposition/Diffusion Process for Surface Hardening of Steels” in this Volume. The traditional pack consists of four components: the substrate or part to be coated, the master alloy (i.e., a powder of the element or elements to be deposited...
Abstract
Pack cementation is the most widely employed method of diffusion coating. This article briefly reviews pack cementation processes of aluminizing, chromizing, and siliconizing. It contains tables that list typical characteristics of pack cementation processes and commercial applications of pack cementation aluminizing, which is used to improve the performance of steels in high-temperature corrosive environments.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005301
EISBN: 978-1-62708-187-0
..., strontium began to replace sodium as the preferred modifier. Strontium is easily added via master alloys with nearly 100% recovery, and its loss to oxidation is slow ( Ref 23 ). With strontium, the control of microstructure is easier and the mechanical properties in castings are more consistent ( Ref 24...
Abstract
This article focuses on aspects that are important for the commercial production of castings. It discusses the modification process in hypoeutectic and eutectic alloys that differ only in the relative volume fraction of primary aluminum and aluminum-silicon eutectic. The article explains how modification changes porosity formation in a casting. It describes the mechanisms responsible for silicon modification, as well as the modifications and changes in eutectic nucleation and the eutectic grain structure. The article reviews the usage of strontium in foundry practices. The growth of silicon eutectic is described to explain effects ancillary to silicon modification. The article also examines the effects of elements, such as phosphorus, antimony, bismuth, magnesium, boron, and calcium, on the silicon structure.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003218
EISBN: 978-1-62708-199-3
... a closed/vented pack to an elevated temperature (e.g., 1050 °C, or 1920 °F) for a given time (e.g., 16 h) during which a diffusional coating is produced. The traditional pack consists of four components: the substrate or part to be coated, the master alloy (i.e., a powder of the element or elements...
Abstract
Chemical vapor deposition (CVD) involves the formation of a coating by the reaction of the coating substance with the substrate. Serving as an introduction to CVD, the article provides information on metals, ceramics, and diamond films formed by the CVD process. It further discusses the characteristics of different pack cementation processes, including aluminizing, siliconizing, chromizing, boronizing, and multicomponent coating.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006111
EISBN: 978-1-62708-175-7
... strengthening. However, to achieve adequate homogenization, uniform composition and good diffusion rates must be maintained during sintering. Ferrous master alloys are sometimes used for base powders in admixed systems. Powders manufactured from ferrous master alloys can also be advantageous when the alloy...
Abstract
This article provides information on the most frequently used atmospheres in commercial sintering of powder metallurgy iron and steel materials. These include endothermic, exothermic, dissociated ammonia, pure hydrogen, and nitrogen-base atmospheres. The article discusses sintering of iron and iron-graphite powder, iron-copper and iron-copper graphite, and alloy steels. The effects of various sinter conditions on the amount of combined carbon formed in the steel are also discussed. The article concludes with information on high-temperature sintering and sinter hardening.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006095
EISBN: 978-1-62708-175-7
... metallurgy (PM) titanium alloy categories: Blended elemental (BE) mixing powders of titanium with master alloy powders Prealloyed (PA) titanium powders Processing-microstructure-property relationships are characterized based on this mechanical testing. The results quantify property balances...
Abstract
This article focuses on mechanical testing characterization of blended elemental powder metallurgy (PM) titanium alloys and prealloyed PM titanium alloys. It examines the tensile properties, fracture toughness, stress-corrosion threshold resistance, fatigue strength, crack propagation properties, and processing-microstructure-property relationships of these alloys. The article also reviews five considerations for powder process selection.
Image
in Fundamental Structure-Property Relationships in Engineering Materials
> Materials Selection and Design
Published: 01 January 1997
Fig. 32 (a) Stress-creep fracture times for an iron-base alloy at different temperatures. Source: Ref 11 . (b) Larson-Miller master plot of the same data. This diagram permits fracture times to be estimated at stress-temperature combinations other than those illustrated in (a). Source: Ref
More
Image
in Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 17 Long-term creep predictions using the Larson-Miller and Orr-Sherby-Dorn (OSD) time-temperature parameters for IN 738 alloy. (a) Correlation of Larson-Miller and OSD data. (b) Effect of changing the activation energy on creep predictions. (c) Larson-Miller master curve. (d) Larson
More
1