Skip Nav Destination
Close Modal
Search Results for
Latin hypercube sampling
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-7 of 7 Search Results for
Latin hypercube sampling
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
in Analysis Methods for Probabilistic Life Assessment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 8 Illustration of the Latin hypercube sampling method. CDF, cumulative distribution function
More
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006803
EISBN: 978-1-62708-329-4
..., and the most frequently used simulation methods, standard Monte Carlo sampling, Latin hypercube sampling, and discrete probability distribution sampling. Further, the article discusses methods developed to analyze the results of probabilistic methods and covers the use of epistemic and aleatory sampling...
Abstract
This article provides an outline of the issues to consider in performing a probabilistic life assessment. It begins with an historical background and introduces the most common methods. The article then describes those methods covering subjects such as the required random variable definitions, how uncertainty is quantified, and input for the associated random variables, as well as the characterization of the response uncertainty. Next, it focuses on specific and generic uncertainty propagation techniques: first- and second-order reliability methods, the response surface method, and the most frequently used simulation methods, standard Monte Carlo sampling, Latin hypercube sampling, and discrete probability distribution sampling. Further, the article discusses methods developed to analyze the results of probabilistic methods and covers the use of epistemic and aleatory sampling as well as several statistical techniques. Finally, it illustrates some of the techniques with application problems for which probabilistic analysis is an essential element.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005534
EISBN: 978-1-62708-197-9
... Latin Hypercube Design An experimental design consisting of n trials and for which each factor has n distinct levels. Usually, the factor levels are equally spaced. There is only one sample in each row and each column. Latin hypercube designs are especially useful for computer experiments...
Abstract
This article presents an approach to manage the uncertainty present in materials design. It describes inductive and deductive approaches to deal with uncertainty. The article focuses on providing an understanding of the opportunities for managing uncertainty and the decisions that influence the accuracy of the results. A design of experiments (DOE) represents a sequence of experiments to be performed, expressed in terms of factors set at specified levels. The article discusses the two types of DOEs: the full factorial design and the fractional factorial design. It explains the factors to be considered when selecting a procedure for propagating uncertainty. The article lists the categories of the popular types of uncertainty propagation methods, including simulation-based methods, local expansion methods, and numerical integration-based methods.
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006994
EISBN: 978-1-62708-439-0
... to experimental noise. Traditionally, experimental design methods, such as full factorial, fractional factorial, Latin hypercube, and so on, to identify response trends, for example, multiscale and transient effects through ANOVA or other statistical methods, are used to optimize process parameters. However, when...
Abstract
Process optimization is the discipline of adjusting a process to optimize a specified set of parameters without violating engineering constraints. This article reviews data-driven optimization methods based on genetic algorithms and stochastic models and demonstrates their use in powder-bed fusion and directed energy deposition processes. In the latter case, closed-loop feedback is used to control melt pool temperature and cooling rate in order to achieve desired microstructure.
Book Chapter
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005543
EISBN: 978-1-62708-197-9
... the beginning (Latin); often accepted SI unit, it is occasionally used for iron consists of two-phase mixtures containing used to refer to rst-principles modeling small distances, such as interatomic dis- ferrite and austenite. approaches. tances, and some wavelengths. austenite. A high-temperature form...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.9781627081979
EISBN: 978-1-62708-197-9
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.9781627084390
EISBN: 978-1-62708-439-0