Skip Nav Destination
Close Modal
By
R. Laramee
By
C.D. Rudd
By
Brian S. Hayes, Luther M. Gammon
By
Brian S. Hayes, Luther M. Gammon
Search Results for
Kevlar-polyester
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 42
Search Results for Kevlar-polyester
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Forms and Properties of Composite Materials
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003032
EISBN: 978-1-62708-200-6
...-reinforced epoxy resin S-glass-fiber-reinforced epoxy resin Quartz-fabric-reinforced epoxy resin Kevlar-49-fiber-reinforced epoxy resin Carbon-fiber-reinforced (T300) epoxy resin Graphite-fiber-reinforced (HM) epoxy resin Table 8 shows specific characteristics of several...
Abstract
The design and analysis of aerospace and industrial composite components and assemblies requires a detailed knowledge of materials properties, which, in turn, depend on the manufacturing, machining, and assembly methods used. This article, through several tables and graphs, provides the mechanical properties, physical properties, and service characteristics of representative composite fiber-resin combinations, including thermoplastic matrix composites such as thermoplastic polyester resins, thermoplastic polyamide resins, and thermoplastic polysulfone resins, and thermoset matrix composites such as thermoset polyester resins, thermoset phenolic resins, thermoset epoxy resins, thermoset polyimide resins, and thermoset bismaleimide resins.
Book Chapter
Properties and Performance of Polymer-Matrix Composites
Available to PurchaseBook: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003447
EISBN: 978-1-62708-195-5
...-reinforced epoxy resin S-glass-fiber-reinforced epoxy resin Quartz-fabric-reinforced epoxy resin Kevlar-49-fiber-reinforced epoxy resin Carbon-fiber-reinforced (T300) epoxy resin Graphite-fiber-reinforced (HM) epoxy resin Table 8 shows specific characteristics of several...
Abstract
This article discusses the materials and properties of polymer-matrix composites to characterize each generic material according to its composition and method of manufacture. It contains a table that lists the key physical, mechanical, thermal, and electrical properties, and in-service conditions of concern for resin-matrix composites. Axes definitions, symbols, and special property calculations for composite material property tests are reviewed. The article provides an overview of the performance capabilities of selected polymer-matrix composite materials such as thermoplastic-matrix composites and thermoset-matrix composites. The thermoplastic-matrix composites include thermoplastic polyester resins and fiber resin composites; thermoplastic polyamide resins and fiber-resin composites; and thermoplastic polysulfone resins and fiber-resin composites.
Book Chapter
Bulk Molding Compounds
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003034
EISBN: 978-1-62708-200-6
... 1.7 32 PAN-based carbon High strength Epoxy 1.48 58 49 140 20 330 48 38 5.5 190 28 0.55 10 PAN-based carbon High modulus Epoxy 1.51 58 48 170 25 340 50 55 8.0 210 30 0.70 13 Aramid Kevlar 49 Epoxy 1.34 53 49 160 23 290 42 21 3.0 150 22 1.8 34...
Abstract
Bulk molding compounds can be molded into a variety of complex shapes by methods that can be readily automated for high volume production. This article describes the formulation and processing (compound formation, and molding methods) of bulk molding compounds. It discusses the effects of fiber type, fiber length, and matrix type on thermoset bulk molding compounds. The markets for long-fiber-reinforced bulk molding compounds are electrical, ordnance, aerospace, industrial, sporting goods, and automotive applications.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003467
EISBN: 978-1-62708-195-5
... hours. The blade failure consisted of a complete separation of the outer carbon/epoxy sleeve from the internal Kevlar/epoxy paddle, as well as complete transverse failure of the paddle and the sleeve ( Fig. 1 ). The outer sleeve and the paddle are manufactured separately and then adhesively bonded...
Abstract
This article describes the results of several case history studies of the failure of polymer-matrix composite components to provide not only some representative types of failures that can encounter, but also to provide some insight into the investigative process. These case histories deal mainly with structures that exhibit an initial material and/or manufacturing defect or failures that are most prevalent and most easily solved. The components include helicopter rotor blade, composite wing spar, and aircraft rudder.
Book Chapter
Fibers, Fabrics, and Reinforcements
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003033
EISBN: 978-1-62708-200-6
... E-glass 1.33 5.24 0.28 0.11 S-glass 1.73 6.81 0.32 0.13 Kevlar 49 2.50 9.84 0.90 0.35 Boron 1.50 5.91 1.60 0.63 Graphite fiber tensile modulus versus bulk resistivity Table 9 Graphite fiber tensile modulus versus bulk resistivity Fiber Bulk dc resistivity...
Abstract
This article addresses the types, properties, forms, and applications of fibers that are available for use in fiber-reinforced polymeric matrix composites, including glass, graphite, carbon, aramid, boron, silicon carbide, ceramic, continuous oxide and discontinuous oxide fibers. It describes the functions, types, and chemical composition of fiber sizing agents. The article discusses the styles, properties, applications, and weaving methods of unidirectional, two-directional and multidirectionally reinforced fabrics. The article also reviews the use of prepreg resins in aerospace and lower performance applications.
Book Chapter
Molding Compounds
Available to PurchaseBook: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003370
EISBN: 978-1-62708-195-5
... 58 48 170 25 340 50 55 8.0 210 30 0.70 13 Aramid Kevlar 49 Epoxy 1.34 53 49 160 23 290 42 21 3.0 150 22 1.8 34 Aramid Kevlar 29 Epoxy 1.33 53 49 110 16 270 39 19 2.8 130 19 2.1 40 Effect of Fiber Length Generally, the longer the fiber...
Abstract
Molding compounds are plastic materials in varying stages of pellets or granulation that consist of resin, filler, pigments, reinforcement, plasticizers, and other ingredients ready for use in a molding operation. This article describes the material components and physical properties of sheet molding compounds (SMC). The three types of resin paste mixing techniques, such as batch, batch/continuous, and continuous, for an SMC operation are reviewed. The article discusses the design features and functional operations of the two types of SMC machines, namely, continuous-belt and beltless machines. It explains the formulation and processing of bulk molding compounds and reviews molding methods for bulk molding compounds, including compression, transfer, and injection molding. The effects of the fiber type and length and the matrix type on thermoset bulk molding compounds are discussed. It describes the four injection molding processes of injection molding compounds such as feeding, transporting, injecting, and flowing.
Book Chapter
Pultrusion
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003038
EISBN: 978-1-62708-200-6
...–140 0.85–1.4 6–10 Aramid (c) 1.28 1400 200 80 12 280 40 0.15 1 (a) E-glass unidirectional rovings. (b) Type AS graphite fibers. (c) DuPont Kevlar 49 fibers. Source: Ref 1 The finished-product geometry most often dictates the process to be used. A further...
Abstract
Pultrusion is an automated process for manufacturing composite materials into continuous, constant cross-sectional profiles. The article provides an overview of the pultrusion process and the wide range of materials that can be used to provide a broad spectrum of composite properties. It discusses the mechanical, physical and material properties of pultruded products, and the orientation options available to utilize the properties advantageously. The article also provides guidelines for designing pultruded products.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003417
EISBN: 978-1-62708-195-5
... on fiberglass reinforced polyester resin. When better corrosion resistance is required, vinyl ester resins are used and represent the next largest product segment. Both of these resin types are also available as flame-retardant versions. When a combination of superior mechanical and electrical properties...
Abstract
Pultrusion is a cost-effective automated process for manufacturing continuous, constant cross-section composite profiles. This article describes the process characteristics and advantages of pultrusion. It provides information on the applications of pultrusion and discusses the processing equipment and tooling, the material composition, and the process control essential for a basic understanding of the pultrusion process.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006929
EISBN: 978-1-62708-395-9
.... While attack by aqueous solutions of acids, alkalis, or oxidants is common, the chemical attack of structural plastics by water is somewhat rare. Exceptions are the hot-water degradation of polycarbonate (PC) and thermosetting polyesters as well as the hygroscopic nature of polyamides (PA...
Abstract
This article provides an overview of the physics and math associated with moisture-related failures in plastic components. It develops key equations, showing how they are used to analyze the causes and effects of water uptake, diffusion, and moisture concentration in polymeric materials and resins. It explains how absorbed moisture affects a wide range of properties, including glass transition temperature, flexural and shear modulus,creep, stress relaxation, swelling, tensile and yield strength, and fatigue cracking. It provides relevant data on common polymers, resins, and fiber-resin composites.
Book Chapter
Effects of Composition, Processing, and Structure on Properties of Composites
Available to PurchaseSeries: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002465
EISBN: 978-1-62708-194-8
... used in composites Table 1 Types of materials used in composites Fiber reinforcements Inorganic Glass Boron/tungsten wire Silicon carbide Organic Aramid (Kevlar) Carbon Graphite Matrix materials Resin Thermoplastic Polyester Polyamide...
Abstract
This article describes the interaction of composition, manufacturing process, and composite properties of composites. The manufacturing process includes resin-matrix, metal-matrix, and carbon/carbon matrix processing. The article discusses various mechanical properties of composites. It explores how variations in the composition, manufacturing, shop process instructions, and loading/environmental conditions can affect the use of a composite product in a performance/service life operation.
Book Chapter
Filament Winding
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003039
EISBN: 978-1-62708-200-6
... for commercial filament winding where dimensional stability, corrosion resistance, and low-cost materials and processing are required. Aramid fibers, specifically, DuPont Kevlar 49 and 29, exhibit exceptionally high strength-to-density and modulus-to-density ratios (known as specific strength and specific...
Abstract
Filament winding is a process that allows the precise lay-down of continuous reinforcement in predescribed patterns at a high rate of speed. This article discusses the filament winding process and includes a comparison to other compacting and curing processes. The article describes design factors, and techniques to produce aerodynamic surfaces, improve surface smoothness, and avoid slipping and bridging of filament. The article discusses tooling and the equipment used in the filament winding process, namely, mandrel design, winding machines, tensioners, and ovens.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003481
EISBN: 978-1-62708-195-5
... and a racing powerboat that have been built using advanced composites are shown in Fig. 6 . Racing yachts and boats such as these are built using ultralight sandwich composite materials that have thin laminate skins containing carbon, glass and/or aramid (Kevlar, DuPont) fibers and a core of polyvinyl...
Abstract
This article provides information on the potential applications of fiber-reinforced polymer (FRP) composites for maritime craft and offshore drilling platforms. The key benefits gained from using FRP materials together with an examination of the drawbacks and major issues impeding the more widespread use of composites in marine structures are presented.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003005
EISBN: 978-1-62708-200-6
... carbon, glass, or aramid (Kevlar) fiber to the required thickness, then pressing and curing. Material removal processes include traditional machining (turning, drilling, milling, etc.), grinding (a sort of micromachining process), and nontraditional machining and grinding (electrical discharge...
Abstract
The selection of engineered materials is an integrated process that requires an understanding of the interaction between materials properties, manufacturing characteristics, design considerations, and the total life cycle of the product. This article classifies various engineered materials, including ferrous alloys, nonferrous alloys, ceramics, cermets and cemented carbides, engineering plastics, polymer-matrix composites, metal-matrix composites, ceramic-matrix and carbon-carbon composites, and reviews their general property characteristics and applications. It describes the synergy between the elements of the materials selection process and presents a general comparison of material properties. Finally, the article provides a short note on computer aided materials selection systems, which help in proper archiving of materials selection decisions for future reference.
Book Chapter
Engineering Tables: Polymeric Materials
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003002
EISBN: 978-1-62708-200-6
...) 0.72 (0.40) Transverse 30.4 (16.9) 28.4 (15.8) 16.7 (9.3) 33.3 (18.5) 25.4 (14.1) 22.5 (12.5) 56.3 (31.3) 29.5 (16.4) (a) Union Carbide Thornel 300 fibers. (b) Du Pont Kevlar 49 fibers. (c) Hercules AS fibers Hardness values for selected elastomers Table 5 Hardness...
Abstract
This article is a comprehensive collection of engineering tables providing information on the mechanical properties of and the techniques for processing and characterizing polymeric materials, such as thermosets, thermoset-matrix unidirectional advanced composites, and unreinforced and carbon-and glass-reinforced engineering thermoplastics. Values are also provided for chemical resistance ratings for selected plastics and metals, and hardness of selected elastomers.
Book Chapter
Abbreviations, Symbols, and Tradenames: Engineered Materials
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0006515
EISBN: 978-1-62708-200-6
... ion charge n, (j) omega Parylene is a registered tradename of Union " square root of TradenaRies Carbide Corporation approximately; similar to Fiber FP, Kevlar, Ludox, Tedlar, Teflon, Ryton is a registered tradename of Phillips Greek Alphabet and Viton are registered tradenames of Petroleum Company...
Abstract
This article is a compilation of abbreviations, symbols, and tradenames for terms related to the properties, selection, processing, and applications of the most widely used nonmetallic engineering materials.
Book Chapter
Machining, Drilling, and Cutting of Polymer-Matrix Composites
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003042
EISBN: 978-1-62708-200-6
.... and Whitney G.L. , Ed., Springer-Verlag , 1987 9. VanCleave R.A. , “Laser Cutting of Kevlar Laminates,” BDX-613-1877, Bendix Corporation , Sept 1977 ...
Abstract
This article describes the use of conventional machining techniques, laser cutting and water-jet cutting for producing finished composite parts. It explains two representative polymer-matrix composites--graphite and aramid composites--and discusses the machining and drilling problems such as delamination and fiber or resin pullout. The article describes machining and drilling techniques and the necessary tools and cutting parameters. It presents a description of laser cutting. The article also provides information on the advantages, disadvantages, cutting characteristics, and applications of water-jet cutting and abrasive water-jet cutting.
Book Chapter
Fabrics and Preforms
Available to PurchaseBook: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003360
EISBN: 978-1-62708-195-5
...” in this Volume. Prepreg Resins for Lower-Performance Applications Sheet molding compounds (SMCs), used in applications where the high performance and high cost of carbon prepregs are not justified, consist of continuous or chopped fibers and a polyester or vinyl ester resin. The formulation includes...
Abstract
This article describes the types of fabrics and preforms used in the manufacture of advanced composites and related selection, design, manufacturing, and performance considerations. The types of fabrics and preforms include unidirectional and two-directional fabrics; multidirectionally reinforced fabrics; hybrid fabrics; woven fabric prepregs; unidirectional and multidirectional tape prepregs; and the prepreg tow. The article discusses three major categories of tape manufacturing processes, namely, the hand lay-up, machine-cut patterns that are laid up by hand, and the automatic machine lay-up. It provides a description of the two classes of prepregs. These include those that are suitable for high-performance applications and suitable for lower-performance molding compounds.
Book Chapter
Resin Transfer Molding and Structural Reaction Injection Molding
Available to PurchaseBook: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003413
EISBN: 978-1-62708-195-5
...-thickness or impact properties. Similar effects can be achieved by through-stitching with Kevlar. These techniques are likely to be of future interest for aerospace applications, where a degree of shaping potential, plus the facility to vary the balance of through-thickness and in-plane reinforcements...
Abstract
Resin transfer molding and structural reaction injection molding belong to a family, sometimes denoted as liquid composite molding. This article provides information on the characteristics and automotive and aerospace applications of liquid composite molding. It reviews techniques that use hard tooling and positive (superatmospheric) pressures to produce structures. The techniques include vacuum-assisted resin injection, vacuum infusion, resin-film infusion, and injection-compression molding. The article provides an overview of the materials that are commonly used together with some of processing characteristics that are important to processing speed and part quality. It concludes with a discussion on design guidelines for the liquid composite molding.
Book Chapter
Introduction—Composite Materials and Optical Microscopy
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009071
EISBN: 978-1-62708-177-1
..., 5× objective, montage Fig. 2 Composite materials made from different types of fibers. (a) Woven glass fiber fabric composite revealing a multiphase-matrix morphology. Ultrathin section, transmitted-light phase contrast, 20× objective. (b) Kevlar (E.I. du Pont de Nemours and Company) fabric...
Abstract
This article illustrates the polymer matrices used for composite materials. It describes the use of prepeg materials in manufacturing high-performance composites. The article discusses the various infusion processes for the development of fiber-reinforced composites, namely, resin transfer molding, vacuum-assisted resin transfer molding, and resin film infusion. It explains the composite- and matrix-toughening methods for fiber-reinforced composites, such as dispersed-phase toughening and interlayer toughening. The article concludes with information on optical microscopy, which provides an insight into the micro- and macrostructure of fiber-reinforced composites.
Book Chapter
Sample Preparation and Mounting for Fiber-Reinforced Composites
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009072
EISBN: 978-1-62708-177-1
..., including carbon, glass, Kevlar (E.I. du Pont de Nemours and Company), or polymer fibers. The matrix composition can also vary widely in morphology, hardness, and mechanical properties. There are, however, a few cases that require special mounting techniques combined with nonstandard grinding and polishing...
Abstract
This article describes how composite specimens are sectioned, documented, and labeled during sample preparation. The mounting procedures for the specimen are summarized. The article explains sample clamping, which involves not mounting the specimens using an adhesive or casting resin and corresponds to clamped samples used in automated polishing heads. It details that cavity molds involve mounting the composite specimens using a casting resin in a preset mold. The article also discusses the mounting of composite materials for hand polishing.
1