1-20 of 829

Search Results for Heat exchangers

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

By Dusan P. Sekulic
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006813
EISBN: 978-1-62708-329-4
... Abstract Heat exchangers are devices used to transfer thermal energy between two or more fluids, between a solid surface and a fluid, or between a solid particulate and a fluid at different temperatures. This article first addresses the causes of failures in heat exchangers. It then provides...
Book Chapter

By Robert J. Franco
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001817
EISBN: 978-1-62708-180-1
... Abstract This article describes the characteristics of tubing of heat exchangers with respect to general corrosion, stress-corrosion cracking, selective leaching, and oxygen-cell attack, with examples. It illustrates the examination of failed parts of heat exchangers by using sample selection...
Image
Published: 30 August 2021
Fig. 104 Schematic of refinery naphtha hydrotreater unit heat exchangers. There are two banks of three heat exchangers: A/B/C bank and D/E/F bank. The E heat exchanger catastrophically ruptured on April 2, 2010. More
Image
Published: 30 August 2021
Fig. 109 Fabrication layout of the B and E heat exchangers More
Image
Published: 30 August 2021
Fig. 113 Comparison of damage locations in the B and E heat exchangers. Severe high-temperature hydrogen attack (HTHA) damage is found in the B heat exchanger in the same locations where the E heat exchanger ruptured. ID, inside diameter More
Image
Published: 15 June 2019
Fig. 14 Micromultivoid extrusions for heat exchangers produced from 3 xxx alloys More
Image
Published: 01 February 2024
Fig. 111 Various types of heat exchangers currently in use More
Image
Published: 09 June 2014
Fig. 25 Diverting heat losses through (a) water-water heat exchanger, (b) enclosed cooling tower, and (c) air/water cooler More
Image
Published: 01 November 1995
Fig. 14 Ceramic composite heat exchanger that recovers waste heat from high-temperature corrosive flue gases. Source: Ref 49 More
Image
Published: 01 February 2024
Fig. 109 Basic heat-exchanger principles, showing a schematic of a simple heat exchanger More
Image
Published: 01 January 1987
Fig. 21 Fatigue striations on the fracture surface of a tantalum heat-exchanger tube. The rough surface appearance is due to secondary cracking caused by high-cycle low-amplitude fatigue. (M.E. Blum, FMC Corporation) More
Image
Published: 01 January 2002
Fig. 4 Failed aluminum brass condenser tube from a saltwater heat exchanger. The tube failed from pitting caused by hydrogen sulfide and chlorides in the feedwater. (a) Cross section of tube showing deep pits and excessive metal wastage. 2 3 4 ×. (b) Higher magnification view of a pit More
Image
Published: 01 January 2002
Fig. 7 Copper-nickel alloy heat-exchanger tubes that failed from denickelification due to attack by water and steam. (a) Etched section through a copper alloy C71000 tube showing dealloying (light areas) around the tube surfaces. Etched with NH 4 OH plus H 2 O. 3.7×. (b) Unetched section More
Image
Published: 01 January 2002
Fig. 8 Copper alloy C44300 heat-exchanger tube that failed by impingement corrosion from turbulent flow of air and condensate along the shell-side surface. (a) Shell-side surface of tube showing damaged area. (b) Damaged surface showing ridges in affected area. 4×. (c) Unetched section through More
Image
Published: 01 January 2002
Fig. 10 Failed admiralty brass heat-exchanger tubes from a refinery reformer unit. The tubes failed by corrosion fatigue. (a) Circumferential cracks on the tension (outer) surface of the U-bends. Approximately 1 1 4 ×. (b) Blunt transgranular cracking from the water side of tube 1. 40× More
Image
Published: 01 January 2002
Fig. 13 Weld in AISI type 316 heat-exchanger shell that failed due to hot shortness. (a) Longitudinal section of weld; the dotted line indicated how the sample was sectioned for microexamination. Approximately 2 1 2 ×. (b) Micrograph of section from weld. Hot shortness resulted More
Image
Published: 01 January 2002
Fig. 14 Type 321 stainless steel heat-exchanger bellows that failed by fatigue originating at heavy weld reinforcement of a longitudinal seam weld. (a) A section of the bellows showing locations of the longitudinal seam weld, the circumferential welds, and the fatigue crack. Dimensions given More
Image
Published: 01 January 2002
Fig. 15 Titanium heat-exchanger tube (ASTM B337, grade 2) that became embrittled and failed because of absorption of hydrogen and oxygen at elevated temperatures. (a) Section of the titanium tube that flattened as a result of test per ASTM B 337; the first crack was longitudinal along the top More
Image
Published: 01 January 2002
Fig. 35 Cracking of a welded ferritic stainless steel heat exchanger ( example 15 ). (a) Diagram showing the heat-exchanger weld joint design. (b) The transverse crack that occurred through the weld. 5.9×. (c) Metallographic profile of the weld near the cracking, showing melt-through, grain More
Image
Published: 01 January 2002
Fig. 17 A stainless steel 316 tube from a heat exchanger More