1-20 of 420 Search Results for

Grain boundary sliding

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 December 2009
Fig. 1 Schematic illustrations of grain-boundary sliding events that open voids at grain-boundary triple junctions. The simplicity of these sliding events ignores the distribution of strains and stresses that can occur in various parts of a polycrystalline solid. More
Image
Published: 01 December 2009
Fig. 4 Schematic illustration of grain-boundary sliding in two types of microstructural conditions: (a) for d > λ and (b) for d < λ. Source: Ref 31 More
Image
Published: 01 January 2000
Fig. 9 Schematic representation of grain-boundary sliding More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004018
EISBN: 978-1-62708-185-6
... Abstract Plastic deformation can occur in metals from various mechanisms, such as slip, twinning, diffusion creep, grain-boundary sliding, grain rotation, and deformation-induced phase transformations. This article emphasizes on the mechanism of slip and twinning under cold working conditions...
Image
Published: 01 January 1987
Fig. 75 One mechanism of intergranular cracking. (a) Schematic showing cracking due to grain-boundary sliding. Arrows along a grain boundary indicate that this boundary underwent sliding. (b) Cracks and voids in Al-5.1 Mg that was stress rupture tested at 260 °C (500 °F). Electrolytically More
Image
Published: 01 January 2005
Fig. 42 Al-1.91Mg alloy deformed 0.62% at 265 °C (510 °F) showing grain-boundary sliding. The sliding is revealed by the shear offsets of the surface scratches (vertical lines) at a grain boundary (diagonal line). Not polished, not etched. Original magnification 250×. Courtesy of A.W More
Image
Published: 01 January 2005
Fig. 9 Nucleation of grain-boundary voids (cavitation) and triple-point cracks at warm and hot working temperatures. (a) Schematic illustration showing how grain-boundary voids are formed under the action of matrix deformation and how grain-boundary sliding in the absence of grain-boundary More
Image
Published: 01 January 2006
Fig. 23 The grain-switching mechanism of Ashby and Verrall. Relative grain-boundary sliding produces a strain (c) without a change in shape of the grains (compare a with c). However, the intermediate step (b) of the process is associated with an increased grain-boundary area. Source: Ref 35 More
Image
Published: 01 January 2005
Fig. 23 The grain-switching mechanism of Ashby and Verrall. Relative grain-boundary sliding produces a strain (c) without a change in shape of the grains (compare a with c). However, the intermediate step (b) of the process is associated with an increased grain-boundary area. Source: Ref 35 More
Image
Published: 01 January 1987
Fig. 34 Triple-point cracking (a) and cavitation (b) in intergranular creep rupture. Small arrows indicate grain-boundary sliding. More
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003292
EISBN: 978-1-62708-176-4
... with a creep process: the stress and strain rate, strain rate or stress and temperature, strain rate or stress and grain size, and strain contributed by boundary sliding and total strain. The article describes the deformation characteristics and mechanisms of low-stress region, intermediate-stress region...
Image
Published: 30 November 2018
Fig. 19 Deformation mechanism map of aluminum alloy 5083 with superplastic forming, quick plastic forming, and hot stamping. GBS = grain boundary sliding, SD = slip deformation, PLB = persistent Lüders, or slip, bands. Source: Ref 10 More
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005458
EISBN: 978-1-62708-196-2
... by superplastic and hot forming processes. Grain-boundary cavitation, observed under temperature and strain-rate conditions for which the boundaries are weaker than the grain interiors, often results from grain-boundary sliding and the concentration of strain around nondeformable particles and hard second phases...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005433
EISBN: 978-1-62708-196-2
... or mechanistic description. As a rule of thumb, elongation in excess of 200% is termed as superplasticity. Over the years, a number of superplasticity models have been proposed. A majority of experimental evidences suggests that grain-boundary sliding (GBS) is the dominant deformation mechanism. Generally...
Series: ASM Handbook
Volume: 24A
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.hb.v24A.a0006964
EISBN: 978-1-62708-439-0
... by the interaction between dislocations and strengthening γ″ precipitates ( Ref 5 ). Grain-boundary sliding is normally negligible at this application temperature. With a higher homologous temperature ( T / T m > ~0.55) and lower normalized tensile stress (σ/μ < 10 −3 ), grain-boundary sliding—coupled...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004020
EISBN: 978-1-62708-185-6
...-dependent part increases at the expense of the rate-dependent part. In addition to the dislocation-based anelasticity discussed so far, anelastic strain is also contributed by grain-boundary sliding at extremely low stresses, which is excluded from the present model. Plastic As the mobile dislocation...
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005183
EISBN: 978-1-62708-186-3
... by grain-boundary sliding at extremely low stresses, which is excluded from the present model. Plastic As the mobile dislocation density builds up to a significant level, leakage occurs through the barriers, aided by thermal activation. Consequently, yielding begins, starting with the grains most...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002410
EISBN: 978-1-62708-193-1
.... Typical carbide compositions include M 23 C 6 , M 6 C, and MC. Although carbides were initially thought to be deleterious to the creep behavior of nickel-base superalloys, subsequent experience has shown them to increase the creep resistance of polycrystalline alloys by making grain-boundary sliding more...
Image
Published: 01 January 2000
Fig. 12 Histograms for commercial purity Zn-22Al with a grain size of 5.4 μm for offset increments of 0.1 μm at ε ˙ 0 = 4 × 10 −5 s −1 and 493 K. (a) Histogram showing the relative frequency of the number of boundaries. (b) Histogram showing the relative sliding contribution More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009003
EISBN: 978-1-62708-185-6
... temperature increases that produce local softening. Increasing the temperature of deformation leads to significant changes in deformation behavior and fracture mode. At temperatures above one-half the melting point, particularly at low strain rates, grain-boundary sliding becomes prominent. This leads...