Skip Nav Destination
Close Modal
Search Results for
Gleeble machine
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 30
Search Results for Gleeble machine
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009010
EISBN: 978-1-62708-185-6
... explains the cavitation mechanism and failure modes that occur during hot-tension testing. cavitation commercial alloys conventional isothermal hot-tension test ductility Gleeble machine Gleeble testing hot tension testing THE DEVELOPMENT of successful manufacturing techniques for metallic...
Abstract
This article discusses two types of hot-tension tests, namely, the Gleeble test and conventional isothermal hot-tension test, as well as their equipment. It summarizes the data for hot ductility, strength, and hot-tension for commercial alloys. The article presents isothermal hot-tension test data, which helps to gain information on a number of material parameters and material coefficients. It details the effect of test conditions on flow behavior. The article briefly describes the detailed interpretation of data from the isothermal hot-tension test using numerical model. It also explains the cavitation mechanism and failure modes that occur during hot-tension testing.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001431
EISBN: 978-1-62708-173-3
... and weld penetration tests, weld pool shape tests, and Gleeble testing for evaluating weld pool shape, fluid flow, and weld penetration. cold cracking cracking susceptibility fluid flow Gleeble testing hot cracking weld penetration weld pool shape weldability THIS ARTICLE describes many...
Abstract
This article focuses on the tests for evaluating the weldability, cracking susceptibility, weld pool shape, fluid flow, and weld penetration of base materials. These tests include different types of self-restraint tests, externally loaded tests for evaluating cracking susceptibility and weld penetration tests, weld pool shape tests, and Gleeble testing for evaluating weld pool shape, fluid flow, and weld penetration.
Image
Published: 01 January 2003
Fig. 14 Copper-induced LMIE of 4340 steel. (a) and (b) Copper-plated specimen that was pulled at 1100 °C (2010 °F) in a Gleeble hot tensile machine showing liquid copper embrittlement of steel. (c) Scanning electron micrograph of the pulled specimen. 1600×. (d) Computer-processed x-ray map
More
Image
Published: 01 January 2005
Fig. 12 Gleeble ductility curves for lanthanum-bearing and standard Alloy 901 tested on cooling from 1120 °C. Note that the lanthanum-bearing heat displays slightly higher ductility. Specimens represent transverse orientation on a nominal 25 cm square billet. Specimen blanks were heat treated
More
Book Chapter
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000605
EISBN: 978-1-62708-181-8
... ratios (11:1 to 68:1). The ingots were rolled to 19- and 16-mm ( 3 4 - and 5 8 -in.) plate at 1175 °C (2150 °F). The specimens shown in Fig. 109 were machined, placed within a silica sleeve in a Gleeble test unit, and remelted in the central region of the gage length. They were...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of low-carbon steels and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the following: the intergranular fracture, bending impact fracture, brittle fracture, tensile-test fracture, transgranular fracture, cleavage fracture, delayed fracture, corrosion fatigue, inclusion morphology, fatigue crack propagation, and in-service fatigue fracture of various automotive components. These components include tie rod adjusting sleeves, automotive bolts, hydraulic jack shafts, crank handle collars, boiler tubes, drive shafts, bicycle pedal axles, lift-truck hydraulic-piston rods, and steel springs.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003266
EISBN: 978-1-62708-176-4
... mechanical testing Direct resistant heating is used in Gleeble machines with electric current going through the specimen ( Ref 15 ). Advanced Gleeble testing systems, as shown in Fig. 26 , are capable of rapid heating rates up to 10,000 °C/s (20,000 °F/s) ( Ref 16 ). Grips with high thermal...
Abstract
This article emphasizes short-term tension and compression testing of metals at high temperatures. It describes the effect of temperature on deformation and strain hardening, occurrence of high-temperature creep in structural alloys, and the performing of mechanical testing for high-temperature structural alloys. The article discusses hot tension testing and measurements of temperature and strain in the hot tension testing. It also provides an overview of hot compression testing.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0009007
EISBN: 978-1-62708-185-6
... maximum and minimum hot working temperatures (see the article “Hot-Tension Testing”). Most commercial hot tensile testing is done with a Gleeble unit, which is a high-strain-rate, high-temperature testing machine ( Ref 26 ). A solid buttonhead specimen that has a reduced diameter of 6.4 mm (0.250...
Abstract
This article discusses a number of workability tests that are especially applicable to the forging process. The primary tests for workability are those for which the stress state is well known and controlled. The article provides information on the tension test, torsion test, compression test, and bend test. It examines specialized tests including plane-strain compression test, partial-width indentation test, secondary-tension test, and ring compression test. The article explains that workability is determined by two main factors: the ability to deform without fracture and the stress state and friction conditions present in the bulk deformation process. These two factors are described and brought together in an experimental workability analysis.
Book Chapter
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001032
EISBN: 978-1-62708-161-0
...-working temperatures are clearly established. Most commercial hot tensile testing is done with a Gleeble unit, which is a high strain rate, high-temperature testing machine ( Ref 2 ). A solid buttonhead specimen that has a reduced diameter of 6.35 mm (0.250 in.) and an overall length of 88.9 mm (3.5...
Abstract
This article discusses the bulk formability or workability of steels. It describes their formability characteristics and presents procedures for various formability tests used for carbon and alloy steels. Tests for bulk formability can be divided into two main categories: primary tests and specialized tests. The article compares the processing of microalloyed plate and bar products. The article focuses on the use of torsion testing to evaluate the forgeability of carbon and alloy steels and presents information on measuring flow stress. The article discusses the metallurgy and thermomechanical processing of high-strength low-alloy (microalloyed) steels and the various parts of the rolling operation. The article summarizes some of the common tests for determining formability in open-die and closed-die forgings.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004017
EISBN: 978-1-62708-185-6
... Engineering Stress-Strain Curve In the conventional engineering tensile test, a test specimen is gripped at opposite ends within the load frame of a testing machine and the force and extension are recorded until the specimen fractures. The load is converted into engineering normal stress s by dividing...
Abstract
This article focuses on the factors that determine the extent of deformation a metal can withstand before cracking or fracture occurs. It informs that workability depends on the local conditions of stress, strain, strain rate, and temperature in combination with material factors. The article discusses the common testing techniques and process variables for workability prediction. It illustrates the simple and most widely used fracture criterion proposed by Cockcroft and Latham and provides a workability analysis using the fracture limit line. The article describes various workability tests, such as the tension test, ring compression test, plane-strain compression test, bend test, indentation test, and forgeability test. It concludes with information on the role of the finite-element modeling software used in workability analysis.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001822
EISBN: 978-1-62708-180-1
.... In a subsequent study ( Ref 41 ), the Gleeble high strain rate hot-tensile test machine was used to determine the influence of temperature, atmosphere, stress, grain size, strain rate, and amount of copper on LME of iron- and cobalt-base superalloys. A copper contamination of only 0.08-mm (0.003-in.) thickness...
Abstract
This article provides a background of friction-bearing failures due to overheating. The failures of locomotive axles caused by overheated traction-motor support bearings are discussed. The article also describes liquid-metal embrittlement (LME) in steel. It examines the results of various axle studies, with illustrations and concludes with information on the simulation of the LME mechanism.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005605
EISBN: 978-1-62708-174-0
... Abstract The ultrasonic additive manufacturing (UAM) process consists of building up solid metal objects by ultrasonically welding successive layers of metal tape into a three-dimensional shape with periodic machining operations to create detailed features of the resultant object. This article...
Abstract
The ultrasonic additive manufacturing (UAM) process consists of building up solid metal objects by ultrasonically welding successive layers of metal tape into a three-dimensional shape with periodic machining operations to create detailed features of the resultant object. This article provides information on the materials, welding parameters, process consumables, procedures, and applications of the UAM. It describes the methods for determining metallurgical and mechanical properties of solid metal parts to assess the range of materials and applications for which the process is suited. These methods include peel testing, push-pin testing, and microhardness/nanohardness testing. The article also reviews the issues to be addressed in maintaining UAM fabrication quality.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005508
EISBN: 978-1-62708-197-9
... lubrication. Teflon TM film, molybdenum sulfide, or machine oil is often used at room temperature. At hot working temperatures, graphite in oil is used for aluminum alloys, and melted glass is used for steel, titanium, and high-temperature alloys. To hold the lubricant, spiral grooves are often machined...
Abstract
This article describes the most commonly used test methods for determining flow stress in metal-forming processes. The methods include tension, ring, uniform compression, plane-strain compression, torsion, split-Hopkinson bar, and indentation tests. The article discusses the effect of deformation heating on flow stress. It provides metallurgical considerations at hot working temperatures and presents flow curves at conventional metalworking strain rates. The article describes the effect of microstructural scale, crystallographic texture, and equiaxed phases on flow stress at hot working temperatures. It tabulates a summary of certain values describing the flow stress-strain rate relation for steels, aluminum alloys, copper alloys, titanium alloys, and other metals at various temperatures.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006574
EISBN: 978-1-62708-290-7
... Abstract Ultrasonic additive manufacturing (UAM) is a solid-state hybrid manufacturing technique that leverages the principles of ultrasonic welding, mechanized tape layering, and computer numerical control (CNC) machining operations to create three-dimensional metal parts. This article begins...
Abstract
Ultrasonic additive manufacturing (UAM) is a solid-state hybrid manufacturing technique that leverages the principles of ultrasonic welding, mechanized tape layering, and computer numerical control (CNC) machining operations to create three-dimensional metal parts. This article begins with a discussion on the process fundamentals and process parameters of UAM. It then describes metallurgical aspects in UAM. The article provides a detailed description of a wide range of mechanical characterization techniques of UAM, namely tensile testing, peel testing, and pushpin testing. The article ends with information on sensor embedding.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003991
EISBN: 978-1-62708-185-6
... Abstract This article focuses on the forging behavior and practices of carbon and alloy steels. It presents general guidelines for forging in terms of practices, steel selection, forgeability and mechanical properties, heat treatments of steel forgings, die design features, and machining...
Abstract
This article focuses on the forging behavior and practices of carbon and alloy steels. It presents general guidelines for forging in terms of practices, steel selection, forgeability and mechanical properties, heat treatments of steel forgings, die design features, and machining. The article discusses the effect of forging on final component properties and presents special considerations for the design of hot upset forgings.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005857
EISBN: 978-1-62708-167-2
... be done to confirm the quality after setup and changeover of the induction machine to new parts for every lot. Typically, a lot is not to exceed 8 h or one day's production, whichever is smaller. The process of changeover is done by trial and error and therefore requires a lot of downtime. Material...
Abstract
Inspection involves two types of testing, namely, destructive and non-destructive. This article provides an overview of the various inspection plans, such as first-article inspection and periodic tests done by destructive metallurgical testing and the final inspection done by the application of non-destructive technology. It describes the processes involved in destructive methods, such as surface hardness measurement, induction hardening pattern and heat-affected zone inspection, and the examination of microstructure before and after induction hardening. It also discusses non-destructive evaluation techniques for defect detection and microstructure characterization as well as non-destructive evaluation for real-time monitoring of induction process.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005604
EISBN: 978-1-62708-174-0
... in (a) steels and (b) aluminum alloys. Adapted from Ref 17 The thermal expansion of a specimen undergoing high heating and cooling rates is normally measured with a special dilatometric device, for example, a Gleeble machine. Here, t 8/5 times of approximately 3 s for a thin-sheet metal specimen can...
Abstract
This article focuses on the necessary basics for thermomechanical fusion welding simulations and provides an overview of the specific aspects to be considered for a simulation project. These aspects include the required material properties, experimental data needed for validation of the simulation results, simplifications and assumptions as a prerequisite for modeling, and thermomechanical simulation. The article concludes with information on the sensitivity of the material properties data with respect to the simulation results. It also provides hints on the central challenge of having the right material properties at hand for a specific simulation task.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005787
EISBN: 978-1-62708-165-8
... Abstract Steels may be annealed to facilitate cold working or machining, to improve mechanical or electrical properties, or to promote dimensional stability. This article, using iron-carbon phase diagram, describes the types of annealing processes, namely, subcritical annealing, intercritical...
Abstract
Steels may be annealed to facilitate cold working or machining, to improve mechanical or electrical properties, or to promote dimensional stability. This article, using iron-carbon phase diagram, describes the types of annealing processes, namely, subcritical annealing, intercritical annealing, supercritical or full annealing, and process annealing. Spheroidizing is performed for improving the cold formability of steels. The article provides guidelines for annealing and tabulates the critical temperature values for selected carbon and low-alloy steels and recommended temperatures and time cycles for annealing of alloy steels and carbon steel forgings. Different combinations of annealed microstructure and hardness are significant in terms of machinability. Furnaces for annealing are of two basic types, batch furnaces and continuous furnaces. The article concludes with a description of the annealing processes for steel sheets and strips, forgings, bars, rods, wires, and plates.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003635
EISBN: 978-1-62708-182-5
...) in a Gleeble hot tensile machine showing liquid copper embrittlement of steel. (c) Scanning electron micrograph of the pulled specimen. 1600×. (d) Computer-processed x-ray map showing the presence of copper in prior-austenite grain boundaries Inert Carriers and LMIE In some cases, investigation...
Abstract
Liquid metal induced embrittlement (LMIE) is the reduction of the fracture resistance of a solid material during exposure to a liquid metal. This article discusses the mechanisms and occurrence condition of LMIE and describes the effects of metallurgical factors, such as grain size, temperature and strain rate, stress, inert carriers, and fatigue, on LMIE. It provides a detailed discussion on LMIE in ferrous and nonferrous metals and their alloys. In addition, the article highlights the ways of preventing embrittlement in metals and alloys.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005800
EISBN: 978-1-62708-165-8
... stretchability. The HER of Q&P 1180 and Q&P 980 compared to DP 980 is shown in Fig. 8 . For either punched or machined edges, Q&P 1180 shows higher HER than Q&P 980 and DP 980, while Q&P 980 shows similar HER as DP 980. One possible explanation of the high HER of Q&P 1180 is its high...
Abstract
Quenching and partitioning (Q&P) steel is a term used to describe a series of C-Si-Mn, C-Si-Mn-Al, or other steels subjected to the quenching and partitioning heat treatment process. This article discusses the Q&P steel's chemical compositions and mechanical properties, and provides an overview of the important background and product characteristics with a focus on the automotive sheet steel application. It schematically represents the continuous annealing process, consequent phase-transformation behaviors, and forming-limit curves of Q&P steels. The article describes the parameters associated with resistance spot welding, laser welding, and metal active gas welding. It also provides useful information of retained austenite volume fraction measured by x-ray diffraction and electron backscatter diffraction. The article also examines microstructure evolution during tensile testing at different strain levels using electron backscatter diffraction.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001034
EISBN: 978-1-62708-161-0
... amounts of sulfur and phosphorus are added to some steels to provide free-machining characteristics. These steels have relatively poor weldability because of hot tearing in the weld metal caused by low-melting compounds of phosphorus and sulfur at the grain boundaries. Iron oxide and iron sulfide...
Abstract
This article aims to survey the factors controlling the weldability of carbon and low-alloy steels in arc welding. It discusses the influence of operational parameters, thermal cycles, and metallurgical factors on weld metal transformations and the susceptibility to hot and cold cracking. The article addresses the basic principles that affect the weldability of carbon and low-alloy steels. It outlines the characteristic features of welds and the metallurgical factors that affect weldability. It describes the common tests to determine steel weldability. There are various types of tests for determining the susceptibility of the weld joint to different types of cracking during fabrication, including restraint tests, externally loaded tests, underbead cracking tests, and lamellar tearing tests. Weldability tests are conducted to provide information on the service and performance of welds. The major tests that are discussed in this article are weld tension test, bend test, the drop-weight test, the Charpy V-notch test, the crack tip opening displacement test, and stress-corrosion cracking test.
1