Skip Nav Destination
Close Modal
By
American Welding Society, G.R. Spies, G.C. Barnes, K.L. Brown, W. Beisner ...
Search Results for
Gas cylinders
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 773
Search Results for Gas cylinders
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Gas cylinders and regulators used in oxyfuel gas welding. The acetylene cyl...
Available to PurchasePublished: 01 January 1993
Fig. 1 Gas cylinders and regulators used in oxyfuel gas welding. The acetylene cylinder shown is 1029 mm (40.5 in.) high, 314 mm (12.35 in.) in diameter, and has a wall thickness of 4.4 mm (0.175 in.). The oxygen cylinder is 1295 mm (51 in.) high, 229 mm (9 in.) in diameter, and has a wall
More
Image
Published: 01 December 1998
Image
Published: 01 January 1996
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006659
EISBN: 978-1-62708-213-6
... Abstract This article is dedicated to gas chromatography (GC), covering the chromatographic method and primary components of a modern GC apparatus. The components include the carrier gas cylinder, flow controller and pressure regulator, sample inlet and injection port, column oven, and detector...
Abstract
This article is dedicated to gas chromatography (GC), covering the chromatographic method and primary components of a modern GC apparatus. The components include the carrier gas cylinder, flow controller and pressure regulator, sample inlet and injection port, column oven, and detector. Common GC detectors are the thermal conductivity cell detector, flame ionization detector, electron capture detector, sulfur chemiluminescence detector, and nitrogen-phosphorus detector.
Image
Cooling curves as a function of gas pressure in 25 mm diameter cylinders qu...
Available to PurchasePublished: 01 August 2013
Fig. 6 Cooling curves as a function of gas pressure in 25 mm diameter cylinders quenched in amber furnace (Monotherm 60/60/90; bolt charge with 540 kg gross weight; quench gas: nitrogen; gas velocity: ∼7 m/s)
More
Image
Change of diameter of gas-nitrided hollow cylinders as a function of wall t...
Available to Purchase
in Residual Stresses and Distortion in Thermochemically Treated Steels
> Steel Heat Treating Technologies
Published: 30 September 2014
Fig. 35 Change of diameter of gas-nitrided hollow cylinders as a function of wall thickness. OD, outside diameter; ID, inside diameter. Source: Ref 47 , 49 , 50
More
Image
Reactor used to perform gas nitriding. 1, muffle furnace; 2, outer shell; 3...
Available to PurchasePublished: 01 October 2014
Fig. 39 Reactor used to perform gas nitriding. 1, muffle furnace; 2, outer shell; 3, heater; 4, internal container (retort); 5, gas inlet pipe; 6, exhaust pipe; 7, motor; 8, fan; 9, metal-made jig; 10, gas guide cylinder; 11, inverted funnel; 12, vacuum pump; 13, effluent gas combustion
More
Book Chapter
Safety Guidelines for the Handling and Use of Gases in Thermal Spraying
Available to PurchaseBook: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005758
EISBN: 978-1-62708-171-9
..., compressed air, nitrogen, helium, argon, carbon dioxide, hydrogen, acetylene, kerosene, propylene, propane, and natural gas. The article also provides information on the maintenance and safety practices involved in the plumbing configurations of cylinder gas supply units and bulk gas supply units...
Abstract
This article provides members of the thermal spray community with practical recommendations for the safe installation, operation, and maintenance of gas equipment used in the thermal spray process. It focuses on safety issues concerning gas equipment used in conjunction with thermal spray equipment at consumer sites. The article covers the gas sources (bulk or gaseous), the piping (hard and soft) leading to the gas console or the torch, and the specific safety devices used to help ensure safe operation. It discusses the characteristics and safety hazards of gases such as oxygen, compressed air, nitrogen, helium, argon, carbon dioxide, hydrogen, acetylene, kerosene, propylene, propane, and natural gas. The article also provides information on the maintenance and safety practices involved in the plumbing configurations of cylinder gas supply units and bulk gas supply units.
Book Chapter
Safe Practices
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001487
EISBN: 978-1-62708-173-3
... be explosive under some conditions. Fuel gases, such as acetylene or propane, are other common flammables often found in cutting and welding areas. Special attention should be given to fuel gas cylinders, hoses, and apparatus to prevent gas leakage. Combustibles that cannot be removed from the area...
Abstract
Safety is an important consideration in all welding, cutting, and related work. This article discusses the basic elements of safety general to all welding, cutting, and related processes. It includes safety procedures common to a variety of applications. The most important component of an effective safety and health program is management support and direction. The article reviews the role of management, training, housekeeping, and public demonstrations in welding safety to minimize personal injury and property damage. It provides information on the safety measures for eye and face protection in various welding and cutting operations. Injuries and fatalities from electric shock in welding and cutting operations can occur if proper precautionary measures are not followed. The article discusses the electrical safety aspects to be considered for various welding and cutting operations.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005635
EISBN: 978-1-62708-174-0
... and explosion. adhesive bonding arc welding brazing compressed gas cutting electrical safety electromagnetic radiation electron beam welding explosion prevention explosion protection explosion welding fire prevention fire protection friction welding fumes gas high-frequency welding laser...
Abstract
This article presents an overview of the rules, regulations, and techniques implemented to minimize the safety hazards associated with welding, cutting, and allied processes. Safety management, protection of the work area, process-specific safety considerations, and robotic and electrical safety are discussed. The article explains the use of personal protective equipment and provides information on protection against fumes, gases, and electromagnetic radiation. It concludes with a discussion on safe handling of compressed gases as well as the prevention and protection of fire and explosion.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001372
EISBN: 978-1-62708-173-3
..., and are caused to flow together and solidify without the application of pressure to the parts being joined. The most important source of heat for OFW is the oxyacetylene welding (OAW) torch. The simplest and most frequently used OFW system consists of compressed gas cylinders, gas pressure regulators, hoses...
Abstract
Oxyfuel gas welding (OFW) is a manual process in which the metal surfaces to be joined are melted progressively by heat from a gas flame, with or without a filler metal. This article discusses the capabilities, advantages, and limitations of OFW. It describes the role of gases, such as oxygen, acetylene, hydrogen, natural gas, propane, and proprietary gases, in OFW. The article discusses the important elements of an OFW system, such as gas storage facilities, pressure regulators, hoses, torches, related safety devices, and accessories. It describes the sequence for setting up a positive-pressure welding outfit. The article provides information on forehand welding and backhand welding, as well as various joints used. It concludes with a discussion on repairs and alterations, as well as the safety aspects.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001385
EISBN: 978-1-62708-173-3
... gases are normally supplied from bulk sources. An individual gas cylinder may supply one torch, whereas large bulk tanks are used to supply many torches or an automated system utilizing many burners. In all torch brazing systems, regulators are used to safely control the gas distribution. Individual...
Abstract
Torch brazing utilizes a fuel gas flame as a heat source for the brazing process. This article discusses the advantages, limitations, applications, and key techniques of torch brazing, and presents an overview of the equipment used.
Book Chapter
Other Fusion Welding Processes
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003208
EISBN: 978-1-62708-199-3
... consists of compressed gas cylinders, gas pressure regulators, hoses, and a welding torch. Oxygen and fuel are stored in separate cylinders. The gas regulator attached to each cylinder, whether fuel gas or oxygen, controls the pressure at which the gas flows to the welding torch. At the torch, the gas...
Abstract
This article discusses the principles of operation, equipment needed, applications, and advantages and disadvantages of various fusion welding processes, namely, oxyfuel gas welding, electron beam welding, stud welding, laser beam welding, percussion welding, high-frequency welding, and thermite welding.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002385
EISBN: 978-1-62708-193-1
... investigation. cryogenic pressure vessel failure analysis fracture mechanics gas transmission pipeline large fan liquid propane gas cylinder subcritical fracture mechanics FRACTURE MECHANICS has developed into a useful tool in the design of crack-tolerant structures and in fracture control...
Abstract
This article illustrates the role that fracture mechanics can play in failure analysis. It describes the important failure criteria as relations between design and materials factors, which are used to correlate fracture mechanics analysis to the observations of a failure analysis. Descriptions include an indication of how the factors are typically evaluated. The article also provides information on subcritical fracture mechanics. Finally, a group of failure analysis examples explain how fracture mechanics parameters can be determined and how they may be fitted into an overall failure investigation.
Image
Nodularity variation in a series production 50 kg CGI petrol engine cylinde...
Available to Purchase
in Castability, Product Design, and Production of Compacted Graphite Irons
> Cast Iron Science and Technology
Published: 31 August 2017
Fig. 3 Nodularity variation in a series production 50 kg CGI petrol engine cylinder block. Source: Ref 11
More
Image
Cooling curves as function of gas pressure in 25 mm (1 in.) diameter cylind...
Available to PurchasePublished: 01 February 2024
Fig. 11 Cooling curves as function of gas pressure in 25 mm (1 in.) diameter cylinders quenched in single-chamber furnace (MonoTherm 60/60/90; bolt charge with 540 kg gross weight; quench gas: nitrogen; gas velocity ca. 7m/s)
More
Book Chapter
Oxyfuel Gas Cutting
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001483
EISBN: 978-1-62708-173-3
... the exothermic reaction. The simplest oxyfuel gas cutting equipment consists of two cylinders (one for oxygen and one for the fuel gas), gas flow regulators and gages, gas supply hoses, and a cutting torch with a set of exchangeable cutting tips. Such manually operated equipment is portable and inexpensive...
Abstract
Oxyfuel gas cutting (OFC) includes a group of cutting processes that use controlled chemical reactions to remove preheated metal by rapid oxidation in a stream of pure oxygen. This article provides a detailed discussion on the principles of operation and the process capabilities of OFC. In addition to providing information on the equipment used, the article describes the properties of fuel gases (acetylene, natural gas). It also presents an overview of the effect of OFC on base metal and explains the application of OFC in cutting thin, medium, and thick sections, bars, and structural and close-tolerance shapes.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001484
EISBN: 978-1-62708-173-3
... distance. All combustibles should be removed from the work area, and a fire extinguisher should be located in the vicinity. Because the pilot arc from a PAC torch is very hot, extra care should be taken to prevent it from contacting clothing and other flammable materials. Compressed Gas Cylinders...
Abstract
Plasma arc cutting (PAC) is an erosion process that utilizes a constricted arc in the form of a high-velocity jet of ionized gas to melt and sever metal in a narrow, localized area. This article discusses the process description, equipment, gases, operating sequence, process considerations, and applications of PAC. It concludes with a discussion on the safety measures associated with the PAC process.
Book Chapter
5254 Higher-Purity Al-Mg-Cr Alloy
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006701
EISBN: 978-1-62708-210-5
.... aluminum alloy 5254 fabrication characteristics heat exchangers higher-purity aluminum-magnesium-chromium alloys mechanical properties physical properties pumps steam-jacketed kettles Alloy 5254, introduced in 1951 for welded chemical tanks and gas cylinders, has a slightly higher purity level...
Abstract
Alloy 5254 is a higher-purity Al-Mg-Cr alloy used in heat exchangers, steam-jacketed kettles, and pumps. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication characteristics of this 5xxx series alloy.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005590
EISBN: 978-1-62708-174-0
.... The gas(es) may be supplied from a cylinder(s) or liquid container(s). An illustration of a complete GTAW arrangement is shown in Fig. 4 . Fig. 4 Gas tungsten arc welding process schematic Gas tungsten arc welding may readily be automated for automatic, machine, or robotic welding ( Fig. 5...
Abstract
The gas tungsten arc welding (GTAW) process derives the heat for welding from an electric arc established between a tungsten electrode and the part to be welded. This article provides a discussion on the basic operation principles, advantages, disadvantages, limitations, and applications of the process. It describes the equipment used for GTAW, namely, power supplies, torch construction and electrodes, shielding gases, and filler metals as well as the GTAW welding procedures. The article concludes with a review of the safety precautions to avoid possible hazards during the GTAW process: electrical shock, fumes and gases, arc radiation, and fire and explosion.
1