Skip Nav Destination
Close Modal
Search Results for
Forgings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 2290 Search Results for
Forgings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003097
EISBN: 978-1-62708-199-3
... Abstract Forging is the process of working hot metal between dies, usually under successive blows and sometimes by continuous squeezing. This article describes the material selection criteria, quality assurance tests for forged components, and the dimensional tolerances of closed-die steel...
Abstract
Forging is the process of working hot metal between dies, usually under successive blows and sometimes by continuous squeezing. This article describes the material selection criteria, quality assurance tests for forged components, and the dimensional tolerances of closed-die steel forgings. It provides an overview of the mechanical properties of wrought materials. The article also includes information on the fundamentals of hammer and press forgings and the design of hot upset forgings.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001022
EISBN: 978-1-62708-161-0
... particles in the steel matrix. This article summarizes the metallurgical effects of vanadium, niobium, molybdenum, and titanium. The metallurgical fundamentals were first applied to forgings in the early 1970s. The ultimate strength of first- and second-generation microalloy steels is adequate for many...
Abstract
Two high-strength low-alloy (HSLA) families, acicular-ferrite steels and pearlite-reduced steels, contain microalloying additions of vanadium and niobium. Vanadium, niobium, and titanium combine preferentially with carbon and/or nitrogen to form a fine dispersion of precipitated particles in the steel matrix. This article summarizes the metallurgical effects of vanadium, niobium, molybdenum, and titanium. The metallurgical fundamentals were first applied to forgings in the early 1970s. The ultimate strength of first- and second-generation microalloy steels is adequate for many engineering applications, but these steels do not achieve the toughness of conventional quenched and tempered alloys under normal hot-forging conditions. Third-generation microalloy steels differ from their predecessors in that they are direct quenched from the forging temperature to produce microstructures of lath martensite with uniformly distributed temper carbides. Without subsequent heat treatment, these materials achieve properties, including toughness, similar to those of standard quenched and tempered steels.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001021
EISBN: 978-1-62708-161-0
... Abstract Forgings are classified in various ways, beginning with the general classifications open die and closed die. They are also classified according to how they are made; such as hammer upset forgings, ring-rolled forgings, and multiple-ram press forgings; and in terms of the close...
Abstract
Forgings are classified in various ways, beginning with the general classifications open die and closed die. They are also classified according to how they are made; such as hammer upset forgings, ring-rolled forgings, and multiple-ram press forgings; and in terms of the close-to-finish factor or amount of stock that must be removed to satisfy the dimensional and detail requirements of the finished part. In addition to types and classifications, the article discusses critical design factors and ways to ensure that the resulting forgings measure up to metallurgical, mechanical property, and dimensional accuracy requirements. The responsibility for design verification is vested in material control, which depends on the proper application of drawings, specifications, manufacturing process controls, and quality assurance programs. The article addresses each of these areas as well as related topics; including stress-induced fatigue failure, tolerances, machining allowances; and the fundamentals of hammer and press forgings, hot upset forgings, and hot extrusion forgings.
Image
Published: 01 January 2002
Fig. 2 Example of fault tree chart for forgings with dye-penetrant defects
More
Image
Published: 01 January 2002
Fig. 3 Example of a failure mode assessment chart (for fault tree of forgings defects in Fig. 2)
More
Image
Published: 01 January 2002
Fig. 5 Example of corrective action tree for forgings with dye-penetrant defects. LIMCA, liquid metal cleanness analyzer device
More
Image
in Selection and Application of Magnesium and Magnesium Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 9 Large magnesium forgings. Corner and fillet radii are given in Tables 14(a) and 14(b) .
More
Image
Published: 01 January 2005
Fig. 24 Examples of multiple-ram forgings. Displacement of metal can take place from vertical, horizontal, and combined vertical and horizontal planes. Dimensions given are in inches.
More
Image
Published: 01 January 2005
Fig. 1 Comparison of typical design limits for rib-web structural forgings of aluminum alloys (a) and nickel-base alloys (b). Dimensions given in millimeters
More
Image
Published: 01 January 2005
Image
Published: 01 January 2005
Image
Published: 01 January 2005
Fig. 25 Application of tolerances and allowances to forgings. The dimensions are not to scale. a, finish machined; b, machine allowance; c, draft allowance; d, die wear tolerance; e, shrink or length tolerance; f, mismatch allowance
More
Image
Published: 01 January 2005
Fig. 31 Computation of surface stock allowances for forgings that are to be machined
More
Image
Published: 01 January 2005
Fig. 33 Machining stock allowances for hot upset forgings. (a) Hot upset forging terminology and standards. (b) Probable shape of shear-cut ends. (c) Variation of corner radius with thickness of upset. These parts are the simplest forms of upset forgings. Dimensions given in inches
More
Image
Published: 01 January 2005
Fig. 34 Design practice for upset forgings with specifications determined by raw material stock diameter. Tolerances (shown with + or − sign), allowances, and design rules for upset forgings of various typical or common shapes. Dimensions given in inches
More
Image
Published: 01 January 2005
Fig. 35 Design practice for upset forgings in which specifications depend on position of flash in workpiece. Tolerances (shown with + or − sign), allowances, and design rules for upset forgings. See text for discussion. Dimensions given in inches
More
Image
Published: 01 January 2005
Fig. 5 Types of aluminum closed-die forgings and tolerances for each. (a) Blocker-type. (b) Conventional. (c) High-definition. (d) Precision Characteristic Tolerance, mm (in.) Blocker-type Conventional High-definition Precision Die closure +2.3, −1.5 (+0.09, −0.06) +1.5
More
Image
Published: 01 January 2005
Fig. 9 Examples of very large blocker-type aluminum alloy airframe forgings
More
1