Skip Nav Destination
Close Modal
Search Results for
Fe-Ni-Mo alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 611
Search Results for Fe-Ni-Mo alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2006
Fig. 3 Effect of alloying elements on corrosion rate of Ni-Fe-Cr-Mo alloys in H 2 SO 4 +HCl mixtures at 79 °C (175 °F)
More
Image
Published: 01 January 2006
Fig. 14 Effect of alloying elements on corrosion rate of Ni-Fe-Cr-Mo-W alloys in HNO 3 +3% HF at 79 °C (175 °F)
More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004178
EISBN: 978-1-62708-184-9
... such as carbon steel, cast irons, austenitic stainless steels, higher austenitic stainless steels, higher chromium Fe-Ni-Mo alloys, nickel-base alloys, non-metals, and specific other metals and alloys are also discussed. carbon steel mechanical properties physical properties austenitic stainless steels...
Abstract
This article describes the selection of materials for the production and handling equipment of concentrated sulfuric acid, depending on factors such as the allowable corrosion rate, desired mechanical and physical properties, fabrication requirements, availability, and cost. Materials such as carbon steel, cast irons, austenitic stainless steels, higher austenitic stainless steels, higher chromium Fe-Ni-Mo alloys, nickel-base alloys, non-metals, and specific other metals and alloys are also discussed.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006241
EISBN: 978-1-62708-163-4
...-Fe-Co, Mo-Fe-Ni, and Mo-Ni-Co Ternary Systems, Trans. AIME , Vol 194, 1952, p 1071–1075 ( Ref 5 ) Fe-Mo-Ni Isothermal Section at 1100 °C Source: G.V. Raynor and V.G. Rivlin, Phase Equilibria in Iron Ternary Alloys , The Institute of Metals, London, 1988 ( Ref 1 ) Fe-Ni-W Liquidus...
Abstract
This article is a compilation of ternary alloy phase diagrams for which iron (Fe) is the first-named element in the ternary system. The diagrams are presented with element compositions in weight percent. The article includes 16 phase diagrams: Fe-Mn-Ni liquidus projection; Fe-Mn-Ni isothermal section at 750 °C; Fe-Mn-Ni isothermal section at 850 °C; Fe-Mn-Ni isothermal section at 650 °C; Fe-Mn-Ni isothermal section at 550 °C; Fe-Mo-Nb isothermal section at 1050 °C; Fe-Mo-Nb isothermal section at 1150 °C; Fe-Mo-Nb isothermal section at 900 °C; Fe-Mo-Ni liquidus projection; Fe-Mo-Ni isothermal section at 1100 °C; Fe-Mo-Ni isothermal section at 1200 °C; Fe-Ni-W liquidus and solidus projections; Fe-Ni-W isothermal section at 1500 °C; Fe-Ni-W isothermal section at 1455 °C; Fe-Ni-W isothermal section at 1465 °C; and Fe-Ni-W isothermal section at 1400 °C.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006238
EISBN: 978-1-62708-163-4
... Abstract This article is a compilation of ternary alloy phase diagrams for which cobalt (Co) is the first-named element in the ternary system. The other elements are Cr, Cu, Fe, Mo, Ni, Ti, V, and W. The diagrams are presented with element compositions in weight percent. The article includes 36...
Abstract
This article is a compilation of ternary alloy phase diagrams for which cobalt (Co) is the first-named element in the ternary system. The other elements are Cr, Cu, Fe, Mo, Ni, Ti, V, and W. The diagrams are presented with element compositions in weight percent. The article includes 36 phase diagrams (liquidus projection, solidus projection and isothermal section).
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003821
EISBN: 978-1-62708-183-2
... Abstract This article reviews the corrosion behavior in various environments for seven important nickel alloy families: commercially pure nickel, Ni-Cu, Ni-Mo, Ni-Cr, Ni-Cr-Mo, Ni-Cr-Fe, and Ni-Fe-Cr. It examines the behavior of nickel alloys in corrosive media found in industrial settings...
Abstract
This article reviews the corrosion behavior in various environments for seven important nickel alloy families: commercially pure nickel, Ni-Cu, Ni-Mo, Ni-Cr, Ni-Cr-Mo, Ni-Cr-Fe, and Ni-Fe-Cr. It examines the behavior of nickel alloys in corrosive media found in industrial settings. The corrosive media include: hydrochloric acid, sulfuric acid, phosphoric acid, hydrofluoric acid, hydrobromic acid, nitric acid, organic acids, salts, seawater, and alkalis. The modes of high-temperature corrosion include oxidation, carburization, metal dusting, sulfidation, nitridation, corrosion by halogens, and corrosion by molten salts. Applications where the corrosion properties of nickel alloys are important factors in materials selection include the petroleum, chemical, and electrical power industries. Most nickel alloys are much more resistant than the stainless steels to reducing acids, such as hydrochloric, and some are extremely resistant to the chloride-induced phenomena of pitting, crevice attack, and stress-corrosion cracking (to which the stainless steels are susceptible). Nickel alloys are also among the few metallic materials able to cope with hot hydrofluoric acid. The conditions where nickel alloys suffer environmentally assisted cracking are highly specific and therefore avoidable by proper design of the industrial components.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006239
EISBN: 978-1-62708-163-4
... Abstract This article is a compilation of ternary alloy phase diagrams for which chromium (Cr) is the first-named element in the ternary system. The other elements are Fe, Mn, Mo, N, Nb, Ni, Ti, V and W. The diagrams are presented with element compositions in weight percent. The article...
Abstract
This article is a compilation of ternary alloy phase diagrams for which chromium (Cr) is the first-named element in the ternary system. The other elements are Fe, Mn, Mo, N, Nb, Ni, Ti, V and W. The diagrams are presented with element compositions in weight percent. The article includes 55 phase diagrams (liquidus projection, solidus projection, isothermal section and vertical section).
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006243
EISBN: 978-1-62708-163-4
... - Molybdenum).” and “Co-Mo-Ni (Cobalt - Molybdenum - Nickel).” in the article “Co (Cobalt) Ternary Phase Diagrams.” “Cr-Fe-Mo (Chromium - Iron - Molybdenum).” , “Cr-Mo-Ni (Chromium - Molybdenum - Nickel).” , “Cr-Mo-W (Chromium - Molybdenum - Tungsten).” , “Fe-Mo-Nb (Iron - Molybdenum - Niobium...
Abstract
This article is a compilation of ternary alloy phase diagrams for which molybdenum (Mo) is the first-named element in the ternary system. The diagrams are presented with element compositions in weight percent. The article includes 8 phase diagrams: Mo-Nb-Ti isothermal section at 600 °C; Mo-Nb-Ti isothermal section at 1100 °C; Mo-Ni-Ti isothermal section at 1200 °C; Mo-Ni-Ti isothermal section at 900 °C; Mo-Ni-W isothermal section at 700 °C; Mo-Ni-W isothermal section at 1000 °C; Mo-Ti-W isothermal section at 2227 °C; and Mo-Ti-W isothermal section at 1000 °C.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004187
EISBN: 978-1-62708-184-9
... Abstract Mixtures of acids or acids and salts are of great importance to the chemical process industry (CPI) for use in digestion of solids, as a promoter in reactions, as a scale remover, and as a complexant. This article emphasizes the assessment of the performance of Ni-Fe-Cr-Mo alloys...
Abstract
Mixtures of acids or acids and salts are of great importance to the chemical process industry (CPI) for use in digestion of solids, as a promoter in reactions, as a scale remover, and as a complexant. This article emphasizes the assessment of the performance of Ni-Fe-Cr-Mo alloys in mixed acids and salts in an objective manner. It tabulates the nominal compositions of pertinent Ni-Fe-Cr-Mo corrosion-resistant alloys. The article describes the acid and acid-plus-salt mixtures classified into the following general categories: nonoxidizing acid mixtures (H 2 SO 4 +H 3 PO 4 ), nonoxidizing acids with halides (H 2 SO 4 +HCl), oxidizing acid mixtures without halides (H 2 SO 4 +HNO 3 ), and oxidizing acid mixtures with halides (HNO 3 +HF). It also illustrates the effect of alloying elements on the corrosion rate in the nonoxidizing mixtures and oxidizing acid mixtures.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006265
EISBN: 978-1-62708-169-6
...), Inconel (Ni-Cr-Mo), Hastelloy (Ni-Mo-Cr), and Incoloy (Ni-Fe-Cr) families of alloys. The heat treatment processes for gamma prime nickel alloys, gamma prime nickel-iron superalloys, and gamma double-prime nickel-iron superalloys are also included. The article also provides information on age-hardenable...
Abstract
This article describes the heat treatment of wrought solid-solution and precipitation-hardening alloys with a focus on the major families of wrought nickel alloys. It also provides information on the heat treatment of some representative solid-solution alloys in the Monel (Ni-Cu), Inconel (Ni-Cr-Mo), Hastelloy (Ni-Mo-Cr), and Incoloy (Ni-Fe-Cr) families of alloys. The heat treatment processes for gamma prime nickel alloys, gamma prime nickel-iron superalloys, and gamma double-prime nickel-iron superalloys are also included. The article also provides information on age-hardenable alloys, and the effects of cold work on aging response and grain growth with examples.
Image
Published: 31 December 2017
alloy 1 (27% Cr, 11% Mo, 0.25% C, 3% Fe, 2.75% Ni, 1% Si, 1% Mn). Experimental high-molybdenum alloy 2 (24.2% Cr, 11.8% Mo, 0.35% C, 1% Fe, 3.8% Ni, 0.45% Si, 0.52% Mn, 2.07% Nb); Stellite 6 and Stellite 21 similar to alloy 6 and alloy 21, respectively ( Table 1 ). Adapted from Ref 37
More
Image
Published: 01 June 2024
Fig. 11 Fractured surfaces and microstructures of heat-treated PM material made with (a), (c), (e) diffusion-alloyed steel FD-0205HT (Fe + 1.5% Cu + 1.75% Ni + 0.5% Mo + 0.6% C, 6.9 g/cm 3 ): TRS 1447 MPa, HRC 37, MHV 740 (735-745) and (b), (d), (f) pre-alloyed steel FL-4405HT (Fe + 0.85% Mo
More
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006236
EISBN: 978-1-62708-163-4
... Abstract This article is a compilation of ternary alloy phase diagrams for which carbon (C) is the first-named element in the ternary system. The other elements are Co, Cr, Cu, Fe, Mn, Mo, N, Ni, S, Si, Ti, V, and W. The diagrams are presented with element compositions in weight percent...
Abstract
This article is a compilation of ternary alloy phase diagrams for which carbon (C) is the first-named element in the ternary system. The other elements are Co, Cr, Cu, Fe, Mn, Mo, N, Ni, S, Si, Ti, V, and W. The diagrams are presented with element compositions in weight percent. The article includes 136 phase diagrams (solidus projection, liquidus projection, isothermal section and vertical section).
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006178
EISBN: 978-1-62708-163-4
...” “Fe-Mo (Iron - Molybdenum)” in the article “Fe (Iron) Binary Alloy Phase Diagrams” “Ga-Mo (Gallium - Molybdenum)” in the article “Ga (Gallium) Binary Alloy Phase Diagrams” “Ge-Mo (Germanium - Molybdenum)” in the article “Ge (Germanium) Binary Alloy Phase Diagrams” “Hf-Mo (Hafnium...
Abstract
This article is a compilation of binary alloy phase diagrams for which molybdenum (Mo) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006217
EISBN: 978-1-62708-163-4
...)” in the article “Ir (Iridium) Binary Alloy Phase Diagrams.” “Mo-W (Molybdenum - Tungsten)” in the article “Mo (Molybdenum) Binary Alloy Phase Diagrams.” “Nb-W (Niobium - Tungsten)” in the article “Nb (Niobium) Binary Alloy Phase Diagrams.” “Ni-W (Nickel - Tungsten)” in the article “Ni...
Abstract
This article is a compilation of binary alloy phase diagrams for which tungsten (W) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003619
EISBN: 978-1-62708-182-5
... of their application. Nominal compositions of selected heat-resistant nickel alloys Table 1 Nominal compositions of selected heat-resistant nickel alloys UNS No. Alloy Composition, % Common high-temperature applications Cr Ni Co Mo Nb Ti Al Fe C Other N06002 Hastelloy X 22.0 49.0...
Abstract
The article provides an introduction on the importance of alloying elements on corrosion behavior of nickel alloys and describes the applications of heat-resistant alloys to resist corrosion. It focuses on the metallurgical effects, mainly the effect of internal factors, including chemical composition and microstructure of the alloy, and the external factors, including electrolyte composition, temperature, and electrode potential, on the corrosion behavior of corrosion-resistant alloys. The article also discusses the implication of changing the alloy microstructure by second-phase precipitation, cold working, and cast and wrought forms on the corrosion behavior of high-nickel alloys.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006196
EISBN: 978-1-62708-163-4
... (Molybdenum - Plutonium)” in the article “Mo (Molybdenum) Binary Alloy Phase Diagrams .” “Ni-Pu (Nickel - Plutonium)” in the article “Ni (Nickel) Binary Alloy Phase Diagrams .” “O-Pu (Oxygen - Plutonium)” in the article “O (Oxygen) Binary Alloy Phase Diagrams .” “Pb-Pu (Lead - Plutonium...
Abstract
This article is a compilation of binary alloy phase diagrams for which plutonium (Pu) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001072
EISBN: 978-1-62708-162-7
... alloys with about 0.03% B or greater; borides appear similar to carbides, but are not attacked by preferential carbide etchants; M elements can be molybdenum, tantalum, niobium, nickel, iron, or vanadium c 0 = 0.300–0.330 V 3 B 2 Nb 3 B 2 (Mo,Ti,Cr,Ni,Fe) 3 B 2 Mo 2 FeB 2 MN Cubic...
Abstract
Nickel in elemental form or alloyed with other metals and materials has made significant contributions to our present-day society and promises to continue to supply materials for a demanding future. This article provides a historical overview and physical metallurgy of nickel and nickel alloys. It lists and describes the compositions, mechanical and physical properties, and applications of commercial nickel and its alloys. The article briefly explains the forms of corrosion resulting from the exposure of nickel alloys to aqueous environments. It provides valuable information on the commercial forms of nickel alloys, namely, nickel-copper alloys, nickel-chromium and nickel-chromium-iron series, iron-nickel-chromium alloys, controlled-expansion alloys, nickel-iron low-expansion alloys, soft magnetic alloys, and welding alloys.
Book Chapter
Book: Alloy Phase Diagrams
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006179
EISBN: 978-1-62708-163-4
... Diagrams.” “Mn-N (Manganese - Nitrogen)” in the article “Mn (Manganese) Binary Alloy Phase Diagrams.” “Mo-N (Molybdenum - Nitrogen)” in the article “Mo (Molybdenum) Binary Alloy Phase Diagrams.” N-Nb (Nitrogen-Niobium) N-Nb crystallographic data N-Ni (Nitrogen-Nickel...
Abstract
This article is a compilation of binary alloy phase diagrams for which nitrogen (N) is the first named element in the binary pair. The diagrams are presented with element compositions in weight percent. The atomic percent compositions are given in a secondary scale. For each binary system, a table of crystallographic data is provided that includes the composition, Pearson symbol, space group, and prototype for each phase.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006111
EISBN: 978-1-62708-175-7
... temperatures for various iron-base alloys Table 3 Sintering temperatures for various iron-base alloys Material Sintering temperature (a) °C °F Fe, Fe-Cu, Fe-Cu-Ni 1120–1280 2050–2335 Fe-C, Fe-Cu-C, Fe-Cu-Ni-C 1120–1250 2050–2280 Fe-Cu-Ni-Mo (diffusion alloyed)-C 1120–1250 2050...
Abstract
This article provides information on the most frequently used atmospheres in commercial sintering of powder metallurgy iron and steel materials. These include endothermic, exothermic, dissociated ammonia, pure hydrogen, and nitrogen-base atmospheres. The article discusses sintering of iron and iron-graphite powder, iron-copper and iron-copper graphite, and alloy steels. The effects of various sinter conditions on the amount of combined carbon formed in the steel are also discussed. The article concludes with information on high-temperature sintering and sinter hardening.
1