1-20 of 1050

Search Results for Embrittlement

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

By Brett A. Miller
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006778
EISBN: 978-1-62708-295-2
... the likelihood of overload fractures are included. The article focuses primarily on the contribution of embrittlement to overload failure. The embrittling phenomena are described and differentiated by their causes, effects, and remedial methods, so that failure characteristics can be directly compared during...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006784
EISBN: 978-1-62708-295-2
... of hydrogen damage in all the major commercial alloy systems. It covers the broader topic of hydrogen damage, which can be quite complex and technical in nature. The article focuses on failure analysis where hydrogen embrittlement of a steel component is suspected. It provides practical advice for the failure...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006786
EISBN: 978-1-62708-295-2
... Abstract Metal-induced embrittlement is a phenomenon in which the ductility or the fracture stress of a solid metal is reduced by surface contact with another metal in either the liquid or solid form. This article summarizes some of the characteristics of liquid-metal- and solid-metal-induced...
Book Chapter

By David G. Kolman
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003635
EISBN: 978-1-62708-182-5
... Abstract Liquid metal induced embrittlement (LMIE) is the reduction of the fracture resistance of a solid material during exposure to a liquid metal. This article discusses the mechanisms and occurrence condition of LMIE and describes the effects of metallurgical factors, such as grain size...
Book Chapter

By David G. Kolman
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003636
EISBN: 978-1-62708-182-5
... Abstract Embrittlement that occurs below the melting point of the embrittling species is known as solid metal induced embrittlement (SMIE) of metals. This article provides a discussion on the characteristics and investigations of SMIE, liquid metal induced embrittlement, and delayed failure...
Book Chapter

By Bopinder Phull
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003667
EISBN: 978-1-62708-182-5
... Abstract This article begins with a discussion on the classification of hydrogen embrittlement and likely sources of hydrogen and stress. The article describes several hydrogen embrittlement test methods, including cantilever beam tests, wedge-opening load tests, contoured double-cantilever...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003554
EISBN: 978-1-62708-180-1
... Abstract Metal-induced embrittlement is a phenomenon in which the ductility or fracture stress of a solid metal is reduced by surface contact with another metal in either liquid or solid form. This article summarizes the characteristics of solid metal induced embrittlement (SMIE) and liquid...
Book Chapter

Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003552
EISBN: 978-1-62708-180-1
... Abstract This article provides an overview of the classification of hydrogen damage. Some specific types of the damage are hydrogen embrittlement, hydrogen-induced blistering, cracking from precipitation of internal hydrogen, hydrogen attack, and cracking from hydride formation. The article...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002388
EISBN: 978-1-62708-193-1
... mechanisms for SCC. It discusses the materials, environmental, and mechanical factors that control hydrogen embrittlement and SCC behavior of different engineering materials with emphasis on carbon and low-alloy steels, high-strength steels, stainless steels, nickel-base alloys, aluminum alloys, and titanium...
Book Chapter

By George F. Vander Voort
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001039
EISBN: 978-1-62708-161-0
... Abstract This article examines the embrittlement of iron and carbon steels. It describes compositional, processing, and service conditions that contribute to the problem and presents examples of how embrittlement influences mechanical properties. Embrittlement due to hydrogen is the most common...
Image
Published: 01 January 1987
Fig. 30 Decohesive rupture in an AISI 8740 steel nut due to hydrogen embrittlement. Failure was due to inadequate baking following cadmium plating; thus, hydrogen, which was picked up during the plating process, was not released. (a) Macrograph of fracture surface. (b) Higher-magnification More
Image
Published: 01 January 1987
Fig. 46 Examples of hydrogen-embrittled titanium alloys. (a) Hydrogen embrittlement fracture in a Ti-8Al-1Mo-1V alloy in gaseous hydrogen. Note crack-arrest marks. Source: Ref 137 . (b) Cleavage fracture in hydrogen-embrittled Ti-5Al-2.5Sn alloy containing 90 ppm H. Source: Ref 141 More
Image
Published: 01 January 1987
Fig. 645 Hydrogen embrittlement of AISI type 304 tested under constant load in pure hydrogen gas at 100 kPa (1 atm) and 25 °C (75 °F). The two-part fractograph compares matching fracture surfaces. Note the quasi-cleavage-type facets. They generally exhibit more ductility (have a rougher More
Image
Published: 01 January 1987
Fig. 789 Fracture caused by hydrogen embrittlement in threaded specimen of AISI H11 tool steel (same heat treatment and tensile strength as in Fig. 786 ). Hydrogen impregnation was by plating. Fracture occurred before the full sustained load could be applied and progressed around More
Image
Published: 01 January 2002
Fig. 33 Liquid-metal-induced embrittlement and cracking evidence that occurred during torch brazing. 2% nital etch. 119× More
Image
Published: 01 January 2002
Fig. 3 Effect of surface embrittlement from varied UV exposure times on creep rupture behavior of polyethylene at 80°C (175 °F). Source: Ref 17 More
Image
Published: 01 January 2002
Fig. 1 Cadmium-plated AISI 8740 steel nut that failed by hydrogen embrittlement. Failure occurred seven days after installation on an aircraft wing structure. See also Fig. 2. 5×. Courtesy of Lockheed-Georgia Company More
Image
Published: 01 January 2002
Fig. 4 Two views of a fracture from hydrogen embrittlement of a type 431 stainless steel mushroom-head closure (Example 1). This is not typical; HE cracking on cylinders is usually circumferential. More
Image
Published: 01 January 2002
Fig. 2 Mercury-induced embrittlement of bronze rupture discs. (a) Premature, atypical rupture of a rupture disc. (b) SEM fractograph of a failed rupture disc, showing intergranular crack propagation. 554×. Source: Ref 11 More
Image
Published: 01 January 2002
Fig. 7 Plot showing the effect of temper embrittlement on the fracture toughness of a 1CrMoV steel. Source: Ref 8 More