1-20 of 977 Search Results for

Electron microscopy

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 2024
DOI: 10.31399/asm.hb.v12.a0006847
EISBN: 978-1-62708-387-4
... Abstract The introduction of focused ion beam (FIB) microscopy in the 1990s added the capability of studying fracture surfaces in the third dimension and making site-specific and stress-free transmission electron microscope (TEM) specimens in situ. This article reviews the methods for preparing...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006769
EISBN: 978-1-62708-295-2
... preparation scanning electron microscope scanning electron microscopy THE SCANNING ELECTRON MICROSCOPE (SEM) is one of the most versatile instruments for investigating the microscopic features of most solid materials. Compared to the light microscope, it expands the resolution range by more than 1...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006668
EISBN: 978-1-62708-213-6
... of the SEM compared with other common microscopy and microanalysis techniques. The following sections cover the critical issues regarding sample preparation, the physical principles regarding electron beam-sample interaction, and the mechanisms for many types of image contrast. The article also presents...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006681
EISBN: 978-1-62708-213-6
... Abstract Transmission electron microscopy (TEM) approach enables essentially simultaneous examination of microstructural features through imaging from lower magnifications to atomic resolution and the acquisition of chemical and crystallographic information from small regions of the thin...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003755
EISBN: 978-1-62708-177-1
... Abstract This article outlines the beam/sample interactions and the basic instrumental design of a scanning electron microscopy (SEM), which include the electron gun, probeforming column (consisting of magnetic electron lenses, apertures, and scanning coils), electron detectors, and vacuum...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003753
EISBN: 978-1-62708-177-1
... Abstract This article introduces the concepts of electron and light microscopy with some general features of imaging systems and the ideas of magnification, resolution, depth of field, depth of focus, and lens aberrations as they apply to simple and familiar light-optical systems. In addition...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003533
EISBN: 978-1-62708-180-1
... Abstract The scanning electron microscopy (SEM) is one of the most versatile instruments for investigating the microstructure of metallic materials. This article highlights the development of SEM technology and describes the operation of basic systems in an SEM, including the electron optical...
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001835
EISBN: 978-1-62708-181-8
... Abstract Scanning electron microscopy (SEM) has unique capabilities for analyzing fracture surfaces. This article discusses the basic principles and practice of SEM, with an emphasis on its applications in fractography. The topics include an introduction to SEM instrumentation, imaging...
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001836
EISBN: 978-1-62708-181-8
... fractographs with illustrations. cleaning fractograph fracture surface scanning electron microscopy specimen replication transmission electron microscopy THE APPLICATION of the transmission electron microscope to the study of fracture surfaces and related phenomena made it possible to obtain...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001766
EISBN: 978-1-62708-178-8
... Abstract Analytical transmission electron microscopy (ATEM) is unique among materials characterization techniques as it enables essentially the simultaneous examination of microstructural features through high-resolution imaging and the acquisition of chemical and crystallographic information...
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001767
EISBN: 978-1-62708-178-8
... Abstract Scanning electron microscopy (SEM) has shown various significant improvements since it first became available in 1965. These improvements include enhanced resolution, dependability, ease of operation, and reduction in size and cost. This article provides a detailed account...
Image
Published: 01 December 1998
Fig. 8 Light microscopy and transmission electron microscopy (thin foil) views of AISI 8620 alloy steel after tempering at various temperatures. All specimens were water quenched from 900 °C (1650 °F) prior to tempering. Light microscopy: 2% nital, 500×; TEM: 25,000× More
Image
Published: 01 December 1998
Fig. 9 Light microscopy and transmission electron microscopy (thin foil) views of AISI 5160 alloy steel after tempering at various temperatures. All specimens were oil quenched from 803 °C (1525 °F) prior to tempering. Light microscopy: 2% nital, 500×; TEM: 25,000× More
Image
Published: 01 June 2012
Fig. 3 Scanning electron microscopy backscattered electron images of Ti64 samples that were deposited via the LENS system using hatch widths of (a) 0.89 mm (0.035 in.), (b) 1.5 mm (0.06 in.), and (c) 2.0 mm (0.08 in.). The images show three different-sized scales of engineered porosities More
Image
Published: 01 June 2012
Fig. 9 Backscattered electron scanning electron microscopy image of corrosion products (dark spots) on a stainless steel hypotube. The lower atomic number of the nonmetallic deposit material appears darker than the underlying metal. More
Image
Published: 01 January 2002
Fig. 20 Scanning electron microscopy. (a) Typical scanning electron microscope used in failure analysis photography. (b) Scanning electron microscope photograph of a fatigue fracture More
Image
Published: 09 June 2014
Fig. 15 Microstructure (scanning electron microscopy image) of hot rolled 5150 steel heated in a simulated induction-hardening process at 300 °C/s to 900 °C (540 °F/s to 1650 °F) and then quenched to form a martensitic microstructure with visible ghost pearlite, identified by the white arrows More
Image
Published: 01 June 2016
Fig. 24 Bright-field transmission electron microscopy image in the ⟨110⟩ α direction of Al-4Cu-0.1Mg-0.62Ag alloy aged for 1000 h at 250 °C (480 °F). It features Ω and θ′ precipitates. Source: Ref 174 More
Image
Published: 01 June 2016
Fig. 28 High-angle annular dark-field scanning transmission electron microscopy age of η′ precipitate in a 7449 alloy in the T6 state. Courtesy of S.J. Andersen and C.D. Marioara. For further explanation, see Ref 202 . More
Image
Published: 01 June 2016
Fig. 4 (a) Transmission electron microscopy and (b) high-resolution transmission electron microscopy images of β″ precipitates in Al-0.64Mg-0.69Si alloy after 36 h of artificial aging at 175 °C (350 °F). Both images were taken along a ⟨001⟩ α direction. The mean particle cross section is 5.3 More