1-20 of 1923

Search Results for Diffusers

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001293
EISBN: 978-1-62708-170-2
... Abstract This article describes the widespread use of diffusion coatings for elevated-temperature protection of the turbine components for aircraft engines and gas turbines. The principles of pack diffusion coating, namely, aluminizing, chromizing, and siliconizing, are discussed. The article...
Book Chapter

Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005612
EISBN: 978-1-62708-174-0
... Abstract This article describes the solid-phase and liquid-phase processes involved in diffusion bonding of metals. It provides a detailed discussion on the diffusion bonding of steels and their alloys, nonferrous alloys, and dissimilar metals. Ceramic-ceramic diffusion welding and a variation...
Book Chapter

By W. Daniel Kay
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001390
EISBN: 978-1-62708-173-3
... Abstract Diffusion brazing (DFB) is a process that coalesces, or joins, metals by heating them to a suitable brazing temperature at which either a preplaced filler metal will melt and flow by capillary attraction or a liquid phase will form in situ between one faying surface and another...
Book Chapter

Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005606
EISBN: 978-1-62708-174-0
... Abstract This article provides a qualitative summary of the theory of diffusion bonding, as distinguished from the mechanisms of other solid-state welding processes. Diffusion bonding can be achieved for materials with adherent surface oxides, but the resultant interface strengths...
Book Chapter

By Carelyn E. Campbell
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005430
EISBN: 978-1-62708-196-2
... Abstract Diffusion is the process by which molecules, atoms, ions, point defects, or other particle types migrate from a region of higher concentration to one of lower concentration. This article focuses on the diffusivity data and modeling of lattice diffusion in solid-state materials...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001350
EISBN: 978-1-62708-173-3
... Abstract Diffusion bonding is only one of many solid-state joining processes wherein joining is accomplished without the need for a liquid interface (brazing) or the creation of a cast product via melting and resolidification. This article offers a qualitative summary of the theory of diffusion...
Book Chapter

By C.C. Bampton
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005512
EISBN: 978-1-62708-197-9
... Abstract The goals of modeling diffusion bonding can be regarded as twofold: to optimize the selection of the process variables for a given material and to provide an understanding of the mechanisms by which bonding is achieved. This article describes the existing models of diffusion bonding...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005439
EISBN: 978-1-62708-196-2
... Abstract This article presents various equations that are essential for the modeling of both single-phase and multiphase profiles. It includes the fundamental laws of diffusion, along with its equations and solutions. The article provides information on the series of applications...
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005536
EISBN: 978-1-62708-197-9
... Abstract This article focuses on the modeling and simulation of diffusion-controlled processes related to both materials processing such as heat treatments, and materials degradation from a practical perspective by using the one-dimensional (1-D) sharp interface approach. It describes various...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001446
EISBN: 978-1-62708-173-3
... Abstract Diffusion welding involves minimal pressurization, but relatively high temperatures and long periods of time. This article discusses the process variants of diffusion welding: solid-phase and liquid-phase processes. It describes the diffusion welding of carbon and low-alloy steels...
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005773
EISBN: 978-1-62708-165-8
... Abstract The thermoreactive deposition and diffusion process is a heat-treatment-based method to form coatings with compacted layers of carbides, nitrides, or carbonitrides, onto some carbon/nitrogen-containing materials, including steels. The amount of active carbide forming elements/nitride...
Image
Published: 01 January 2003
Fig. 5 Diffusion mechanisms. (a) Vacancy diffusion. (b) Interstitial diffusion. (c) Interstitial diffusion with displacement More
Image
Published: 01 August 2013
Fig. 7 Diffused MCrAlY coating showing beta phase (aluminum rich) and diffusion zone More
Image
Published: 01 January 2003
Fig. 6 Non-steady-state diffusion. Oxygen distribution during its diffusion into the semi-infinite plate. C M , concentration at metal/oxide interface; C 0 , initial concentration More
Image
Published: 01 January 1986
Fig. 89 Example of grain-boundary diffusion compared to volume diffusion. Same 650 °C (1200 °F) ternary austenite specimen as shown in Fig. 87(a) and 87(b) . Source: Ref 72 More
Image
Published: 01 January 2002
Fig. 14 Fracture surface diffuse lighting. (a) Dual-side incandescent diffuse copystand lighting setup. (b) Resulting diffuse lighting photograph of a fatigue fracture More
Image
Published: 01 December 2009
Fig. 7 Diffusion path and composition vector for a single-phase diffusion couple plotted on a phase diagram. Open circles are the initial diffusion-couple alloys. More
Image
Published: 01 January 1990
Fig. 25 Ratio between diffusion coefficients of alloy elements and self-diffusion of iron. Source: Ref 97 More
Image
Published: 01 August 2013
Fig. 1 Plasma-sprayed zirconium coating used as an atomic diffusion barrier between uranium reactor fuel and the surrounding aluminum cladding More
Image
Published: 01 January 1994
Fig. 1 Schematic diagrams of the fluxes of the major diffusing gaseous species in aluminizing packs activated with (a) NH 4 X ( X = Cl, Br, or I), (b) NH 4 F, and (c) NaCl. Source: Ref 20 , 21 More