Skip Nav Destination
Close Modal
Search Results for
DRA systems
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 43
Search Results for DRA systems
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1996
Fig. 31 Tearing modulus data for various DRA systems including 6061/Al 2 O 3 , MB78/SiC, and Al-Si-Mg/Si. Reference 44 contains data sources.
More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004002
EISBN: 978-1-62708-185-6
...) techniques. This article begins with a summary of general observations on the forging of discontinuously reinforced composites. It provides information on some of the specific experimental results obtained on various DRA systems, including 2xxx DRA alloys and cast DRA alloys. The article reviews the efforts...
Abstract
Discontinuously reinforced aluminum (DRA) alloy metal-matrix composites (MMCs) represent an advanced aluminum materials concept whereby ceramic particles, or whiskers, are added to aluminum-base alloys through the use of either ingot-melting or casting and/or powder-metallurgy (P/M) techniques. This article begins with a summary of general observations on the forging of discontinuously reinforced composites. It provides information on some of the specific experimental results obtained on various DRA systems, including 2xxx DRA alloys and cast DRA alloys. The article reviews the efforts on the modeling of behavior of specific alloy systems, with a comparison of experimental results to the modeling attempts. It concludes with information on the properties of deformation-processed DRA alloys.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002414
EISBN: 978-1-62708-193-1
... Toughness of DRA Systems To the extent possible, this section summarizes published data about the effects of systematic changes in reinforcement volume fraction, reinforcement size, and similar parameters on the resulting toughness of DRA. Figures 22 and 23 summarize the effects of reinforcement...
Abstract
This article reviews the tensile properties and toughness characteristics of discontinuously reinforced aluminum (DRA) composites in terms of particle spacing, particle size, volume fraction, matrix alloy, and matrix microstructure. Both fracture toughness data and impact toughness data of the DRA composites are summarized. The article discusses the effects of confining pressure on the ductility of the DRA materials. It describes the fatigue behavior, such as stress-life behavior, strain-life behavior, and fatigue crack propagation, of the DRA.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003485
EISBN: 978-1-62708-195-5
... applications for aeronautical systems, which are covered here, and space systems, which are covered elsewhere in this Section. Many important applications of DRA are established in aeronautical systems for thermal management and electronic packaging, but these are covered elsewhere in this Section...
Abstract
The primary motivation for the insertion of metal-matrix composites (MMCs) into aeronautical systems is the excellent balance of specific strength and stiffness offered by MMCs. This article provides information on the aerostructural, aeropropulsion, and aeronautical subsystem applications of MMCs. The applications include ventral fin, fuel access door covers, helicopter blade sleeve, fan exit guide vane, nozzle actuator piston rod, nozzle actuator links, T-1 racks, and hydraulic manifold.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003371
EISBN: 978-1-62708-195-5
... that the formation of detrimental reaction products is prevented. There is a continued interest in the development of cast DRA, with the objective of achieving good strength, ductility, and fracture toughness at lower cost. Alcan has conducted a considerable amount of work on DRA materials with two alloy systems...
Abstract
Metallic matrices are essential constituents for the fabrication of metal-matrix composites (MMCs). This article describes three different classes of aluminum alloys, namely, commercial aluminum alloys, low-density and high-modulus alloys, and high temperature alloys. It presents typical tensile properties and fracture toughness of the selected heat treatable aluminum alloys in a table. Titanium alloys are very attractive for MMC applications, due to their higher strength and temperature capability compared to aluminum alloys. The article tabulates the effect of heat treatment on room-temperature properties and tensile properties of Ti-25Al-17Nb alloy sheet.
Image
Published: 01 January 2001
Fig. 3 Materials selection chart depicting normalized strength and stiffness characteristics for various materials systems. Note the high amount of anisotropy (or directional dependence) in composite materials, which can be exploited to create extremely lightweight structures. DRA
More
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003484
EISBN: 978-1-62708-195-5
... of cast iron or steel is less than $0.60/kg ($0.25/lb), and discontinuously reinforced aluminum (DRA) cast ingot currently costs about $3.30 to 4.40/kg ($1.50 to 2.00/lb) for large-scale production, so that the raw material cost of MMCs is higher than that of the material typically replaced. However...
Abstract
This article provides information on the applications of metal-matrix composites in engine components, brake system, and driveshaft. The components include pistons, cylinder liners, valves, pushrods, and connecting rods.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003350
EISBN: 978-1-62708-195-5
... characteristics for various materials systems. Note the high amount of anisotropy (or directional dependence) in composite materials, which can be exploited to create extremely lightweight structures. DRA, discontinuously reinforced aluminum; DRTi; discontinously reinforced titanium; Q/I, quasi-isotropic; P...
Abstract
This article begins with a brief history of composite materials and discusses its characteristics. It presents an introduction to the constituents, product forms, and fabrication processes of composite materials. The article concludes with a discussion on the applications of organic-matrix, metal-matrix, and ceramic-matrix composites.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003420
EISBN: 978-1-62708-195-5
... lie medium-priced composites, including those produced by preform infiltration and powder metallurgy (P/M) techniques. Fig. 1 The material cost versus performance of various aluminum-matrix composites. DRA, discontinuously reinforced aluminum The most commonly used reinforcement...
Abstract
Metal-matrix composites (MMCs) are a class of materials with a wide variety of structural, wear, and thermal management applications. This article discusses the primary processing methods used to manufacture discontinuous aluminum MMCs, namely, high-pressure die casting, pressure infiltration casting, liquid metal infiltration, spray deposition, and powder metallurgy methods. It describes the processing of continuous fiber-reinforced aluminum, discontinuously, reinforced titanium, and continuous fiber-reinforced titanium. The article concludes with information on work done to develop magnesium, copper, and superalloy MMCs.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006488
EISBN: 978-1-62708-207-5
...-phase processing and cast solidification is the most common method of producing discontinuously reinforced aluminum (DRA) alloy MMCs. The reinforcement phase is incorporated in the liquid metal either by stir casting or melt infiltration, as discussed in this article. The melt is then solidified...
Abstract
In general, metal-matrix composites (MMCs) are classified into three broad categories: continuous fiber-reinforced composites, discontinuous or short fiber-reinforced composites, and particle-reinforced composites. This article focuses on stir casting and melt infiltration as the two main methods of MMC solidification processing. It describes the MCC casting methods, such as sand and permanent mold casting, centrifugal casting, compocasting, and high-pressure die casting. The article discusses the MMC infiltration processes in terms of pressure infiltration casting and liquid metal infiltration. It reviews the powder metallurgy processing of aluminum MMCs and deformation processing of discontinuously reinforced aluminum composites. The article concludes with a discussion on the processing of fiber-reinforced aluminum.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006551
EISBN: 978-1-62708-210-5
... volume fraction of hard primary-silicon particles in the microstructure, and they are often used in applications requiring a high degree of wear resistance, such as pistons, cylinder liners, brake systems components, and transmission servo pistons. Matrix-hardening alloys (2 xx .0 and 355.0 families...
Abstract
Aluminum alloys are widely used in engineered components because of their excellent strength-to-weight ratio. Their use in applications requiring wear resistance is more limited. One of the main limitations of aluminum alloys is the poor tribological behavior mainly due to their relatively low hardness, which favors large plastic deformation under sliding conditions. This article discusses the classes and mechanisms of wear in aluminum-silicon alloys, aluminum-tin bearing alloys, and aluminum-matrix composites; describes the effect of material-related parameters on wear behavior of these alloys; and reviews their applications in a variety of tribological applications in the automotive industry ranging from aluminum-tin alloys for plain bearings to alloys with hard anodizing for machine elements. Methods to improve wear resistance and alloy hardness are also discussed.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003448
EISBN: 978-1-62708-195-5
...., impurity, ash content, etc.). (b) Theoretical value for graphite; density values for bulk graphite range from 1.3–1.9 g/cm 3 . Source: Ref 5 , 6 Properties of Discontinuously Reinforced Aluminum Composites Discontinuously reinforced Al-MMCs, or DRAs, are the most widely applied commercial...
Abstract
Metal-matrix composites (MMCs) are used in structural applications, and in applications requiring wear resistance, thermal management, and weight savings. This article summarizes the mechanical and thermal properties of discontinuously reinforced aluminum MMCs, laminated metallic composites, and continuously aligned fiber reinforced MMCs.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006388
EISBN: 978-1-62708-192-4
.... According to the “American National Standard Alloy and Temper Designation Systems for Aluminum,” ANSI H35.1, the designation is different for these two main groups and is summarized in Table 1 . Some alloys respond to precipitation or age hardening, induced by a proper heat treatment described...
Abstract
This article begins by describing the designations of cast and wrought aluminum alloys. It explains the effects of main alloying elements in aluminum alloys: boron, chromium, copper, iron, lithium, magnesium, manganese, nickel, phosphorus, silicon, sodium, strontium, titanium, and zinc. The article describes the microstructure of cast and wrought aluminum alloys and the various strengthening mechanisms, including solid solution, grain refinement, strain or work hardening, precipitation (or age) hardening, and dispersoid strengthening. The article explicates the tribological behavior of aluminum alloys, aluminum-base composites, and metal-matrix composites. It presents the effect of material-related parameters and external factors on wear behavior and transitions of aluminum-silicon alloys. The article also presents the most important factors affecting the dry sliding wear behavior of particle-reinforced aluminum-base composites against a steel counterface.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003399
EISBN: 978-1-62708-195-5
... of discontinuously reinforced composites (DRCs) is influenced by the morphology of particles, both in the elastic and elastic-plastic domain. Most of the applications of DRCs have been with discontinuously reinforced aluminum alloys (DRAs). The particle shapes of alumina or SiC reinforcements, employed most often...
Abstract
The goal of micromechanics and analysis is to use the predictive methodology to develop tailored composites and also to make accurate predictions of their performance in service. This article reviews results derived from micromechanics analyses, based on finite-element method of unidirectional fiber reinforced metal matrix composites (MMCs). It discusses the elastic deformation and elastic-plastic deformation analysis of discontinuously reinforced MMCs. The article provides an overview of analysis of strength, fatigue, and fracture toughness for macromechanics fiber-reinforced and discontinuous reinforced composites.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0005663
EISBN: 978-1-62708-173-3
... in crystal structure; speed of DIN Deutsche Industrie-Normen (German In- AAR Association of American Railroads light; specific heat; constant dustrial Standards) C cementite; coulomb; heat capacity DPH diamond pyramid hardness AASHTO American Association of State CAC carbon arc cutting DRA discontinuously...
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003480
EISBN: 978-1-62708-195-5
... true for silicon carbide particle-reinforced aluminum (often called Al/SiC in the electronic packaging industry and discontinuously reinforced aluminum, or DRA, in the aerospace industry), which is one of the most important of the new composite packaging materials. In the following sections...
Abstract
This article presents an overview of advanced composites, namely, polymer matrix composites, metal-matrix composites, ceramic-matrix composites, and carbon-matrix composites. It also provides information on the properties and applications of the composites in thermal management and electronic packaging.
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0005754
EISBN: 978-1-62708-195-5
... for engines gal gallon CAT computer-aided tomography DoD Department of Defense GFRP glass- ber-reinforced plastic C-C carbon-carbon DOE Department of Energy GMT glass mat thermoplastics CDCA cyclohexane dicarboxylic anhydride DOF degrees of freedom GL/EP glass/epoxy CFCC continuous ber ceramic composite DRA...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.9781627081733
EISBN: 978-1-62708-173-3
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003971
EISBN: 978-1-62708-185-6
...-matrix composites (DRA MMCs) have been synthesized and subsequently bulk formed by a variety of techniques. The majority of MMCs have been based on aluminum matrices with silicon carbide particulate or whisker reinforcements synthesized in tonnage quantities by I/M or P/M approaches. In the I/M method...
Abstract
Metalworking is one of the three major technologies used to fabricate metal products. This article tabulates the classification of metal forming processes. It discusses different types of metalworking equipment, including rolling mills, ring-rolling machines, and thread-rolling and surface-rolling machines. The article outlines the significant characteristics of pressing-type machines: load and energy characteristics, time-related characteristics, and accuracy characteristics. It summarizes different specialized processes such as advanced roll-forming methods, equal-channel angular extrusion, incremental forging, and microforming. The article describes the thermomechanical processing of nickel- and titanium-base alloys and concludes with information on the advancements in process simulation.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003163
EISBN: 978-1-62708-199-3
...-matrix composites. DRA, discontinuously reinforced aluminum Aluminum MMC Designation System Because more aluminum MMCs are produced than MMCs of all other matrix alloys combined, the Aluminum Association (AA) developed a standard designation system for MMCs that has since been adopted...
Abstract
Metal-matrix composites (MMCs) are a class of materials with potential for a wide variety of structural and thermal applications. This article discusses the mechanical properties of MMCs, namely aluminum-matrix composites, titanium-matrix composites, magnesium-matrix composites, copper-matrix composites, superalloy-matrix composites, and intermetallic-matrix composites. It describes the processing methods of discontinuous aluminum MMCs which include casting processes, liquid-metal infiltration, spray deposition and powder metallurgy. The article provides useful information on aluminum MMC designation system and also describes the types of continuous fiber aluminum MMCs, including aluminum/boron MMC, aluminum/silicon carbide MMC, aluminum/graphite MMC, and aluminum/alumina MMC.
1