1-20 of 363 Search Results for

Creep fracture/stress rupture

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... temperatures at different stresses. Source: Ref 18 Fig. 9 Schematic creep curves for alloys having low and high stress-rupture ductility, showing the increased safety margin provided by the alloy with high stress-rupture ductility. Source: Ref 18 Fig. 14 Fracture mechanism map...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... in a jet-engine turbine blade. Courtesy of J. Schijve Fig. 10 Stress rupture of heater tube. (a) Heater tube that failed due to stress rupture. (b) and (c) Stress-rupture voids near the fracture. Source Ref 10 Fig. 11 Creep-induced failure of a boiler plate. (a) A polished cross...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006544
EISBN: 978-1-62708-210-5
... of mechanical property data and of stress-strain curves detailing the effects of mechanical properties on the design and selection of aluminum alloys. The properties include tensile, compressive, shear, bearing, creep and creep-rupture, fatigue, and fracture resistance properties. References References...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006554
EISBN: 978-1-62708-210-5
... and significance of mechanical property data and of stress-strain curves detailing the effects of mechanical properties on the design and selection of aluminum alloys. The properties include tensile, compressive, shear, bearing, creep and creep-rupture, fatigue, and fracture resistance properties. aluminum...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003241
EISBN: 978-1-62708-199-3
...Abstract Abstract This article reviews the various types of mechanical testing methods, including hardness testing; tension testing; compression testing; dynamic fracture testing; fracture toughness testing; fatigue life testing; fatigue crack growth testing; and creep, stress-rupture...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003241
EISBN: 978-1-62708-199-3
... Abstract This article reviews the various types of mechanical testing methods, including hardness testing; tension testing; compression testing; dynamic fracture testing; fracture toughness testing; fatigue life testing; fatigue crack growth testing; and creep, stress-rupture, and stress...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001818
EISBN: 978-1-62708-180-1
.... The article explains the failure of pressure vessels with emphasis on stress-corrosion cracking, hydrogen embrittlement, brittle and ductile fractures, creep and stress rupture, and fatigue with examples. brittle fracture composite creep rupture ductile fracture fabrication failure analysis...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000616
EISBN: 978-1-62708-181-8
... : Fracture surface of long-transverse creep specimen tested at 980 °C (1800 °F) and 48 MPa (7 ksi) for 54 h. Fracture occurred along longitudinal grain boundaries (perpendicular to the applied stress). SEM, 50× (J.K. Tien, T.E. Howson, and J.E. Stulga, Columbia University) Fig. 852 “Departure side...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002472
EISBN: 978-1-62708-194-8
... mechanisms and strain components associated with creep processes; stress and temperature dependence; fracture at elevated temperatures; and environmental effects. The article describes the basic presentation and analysis methods for creep rupture. It provides information on the application of these methods...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002349
EISBN: 978-1-62708-193-1
... condition, or poor design detail) that is aggravated by a crack growth process that causes the crack to reach a critical size for final fracture. The cracking process occurs slowly over the service life from various crack growth mechanisms such as fatigue, stress-corrosion cracking, creep, and hydrogen...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003289
EISBN: 978-1-62708-176-4
... in life due to stress increase. Abstract Abstract This article discusses the methods for assessing creep-rupture properties, particularly, nonclassical creep behavior. The determination of creep-rupture behavior under the conditions of intended service requires extrapolation and/or interpolation...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... are often conducted on time-dependent failure mechanisms. The principal types of elevated-temperature failures are stress rupture, creep, low- or high-cycle fatigue, thermal fatigue, and coating degradation in gas turbines. For high-temperature tubing and piping components, embrittlement phenomena can occur...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003291
EISBN: 978-1-62708-176-4
... and presents a simple mean diameter hoop stress equation, which is used for designing components. It also provides information on the multiaxial creep ductility of tubular components and multiaxial testing methods. References References 1. Huddleston R.L. , An Improved Multiaxial Creep-Rupture...
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005556
EISBN: 978-1-62708-174-0
...-rupture behavior of solid-state-welded silver interlayers ( t / d = 0.024) joining one of two different strengths of type 304 stainless steel base metals (annealed or cold worked), both of which undergo time-dependent plasticity or creep at ambient temperatures at stresses less than the conventional...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001352
EISBN: 978-1-62708-173-3
... dependence of creep rupture is determined by creep plasticity in the stainless steel base metal. The transition from base-metal to interlayer-controlled creep rupture occurs at the “knee” of the cold-worked stainless steel data plot, at stress levels below which base-metal creep is negligible. Figure 7...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001477
EISBN: 978-1-62708-173-3
... in the creep regime are time dependent, it is normal practice to design high-temperature components using the concept of a design life. The design life is usually based on a specific amount of allowable strain or rupture in 100,000 h. A further factor of safety is applied in selecting the stress, which...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003288
EISBN: 978-1-62708-176-4
.... (a) Constant strain loading in tension. (b) Stress-relaxation curves in tension Fig. 20 Stress-strain diagram for determining relaxation in stress Fig. 6 Schematic of a test stand used for creep and stress-rupture testing Fig. 7 Typical rod-and-tube-type extensometer for elevated...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006756
EISBN: 978-1-62708-295-2
... exceeded the strength of the part Possible wrong material (check for proper alloy and processing by hardness check or destructive testing, chemical analysis) Loading direction may show failure was secondary Short-term, high-temperature, high-stress rupture has ductile appearance (see creep...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003225
EISBN: 978-1-62708-199-3
... and destructive testing, chemical analysis Loading direction can show failure was secondary Short-term, high-temperature, high-stress rupture has ductile appearance (see creep) Load exceeded the dynamic strength of the part Check for proper alloy and processing, as well as proper toughness, grain...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003225
EISBN: 978-1-62708-199-3
... factors Load exceeded the strength of the part Check for proper alloy and processing by hardness check and destructive testing, chemical analysis Loading direction can show failure was secondary Short-term, high-temperature, high-stress rupture has ductile appearance (see creep) Load...