Skip Nav Destination
Close Modal
Search Results for
Crashes
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 91 Search Results for
Crashes
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 January 2002
Fig. 1 Crash of the Wright Flyer, 1908. Courtesy of the National Air and Space Museum, Smithsonian Institution, Photo A-42555-A
More
Image
Published: 30 November 2018
Fig. 21 Stiffener and crash absorber in Ferrari 360 and 430 Spider cars. Courtesy of Alulight and Alcoa
More
Image
Published: 30 November 2018
Fig. 23 Aluminum foam part for front crash element of Combino city trams. Courtesy of Alulight International
More
Image
Published: 15 January 2021
Fig. 1 Crash of the Wright Flyer, 1908. Courtesy of the National Air and Space Museum, Smithsonian Institution, Photo A-42555-A
More
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006530
EISBN: 978-1-62708-207-5
... Abstract Adhesive bonding is a proven technology in the manufacture of automotive assemblies, helping carmakers achieve weight reduction goals without compromising body stiffness, crash performance, and noise-vibration-handling characteristics. This article discusses the advantages...
Abstract
Adhesive bonding is a proven technology in the manufacture of automotive assemblies, helping carmakers achieve weight reduction goals without compromising body stiffness, crash performance, and noise-vibration-handling characteristics. This article discusses the advantages and limitations of adhesive-bonded aluminum joints and the procedures used to produce them. It addresses surface preparation, the addition of interfacial coatings and primers, and the application of thermoplastic and thermosetting resins. The article examines the nature and role of the various layers that constitute the joint and explains how each contributes to performance. It also discusses adhesive selection factors, joint design, and testing procedures.
Image
Published: 30 November 2018
Fig. 24 (a) Aluminum foam part (volume: 1926 cm 3 , or 118 in. 3 ; 1250 g, or 44 oz; compression strength: ~17 MPa, or 2.5 ksi). (b) Assembled aluminum crash box for Sprinter Light Train railway vehicle. Courtesy of Institute of Materials and Machine Mechanics SAS, Bratislava
More
Image
Published: 01 January 1987
Fig. 938 Fractured bell-crank fitting of cast aluminum alloy 356.0-T6. The fitting, which was from an aircraft rear horizontal elevator, fractured in a crash. No crack origin was found. See also Fig. 939 , 940 , 941 , 942 , 943 , 944 , 945 , 946 , 947 , 948 , 949 , 950 , 951
More
Image
in Failure Analysis and Life Assessment of Structural Components and Equipment
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 4 Fatigue cracking in an aircraft wing fitting for the F-111 Aircraft 94 that crashed in 1969. (a) and (b) Location of the left wing-pivot box fitting. The 22 mm (0.91 in.) material defect was not observed during inspection, and a fatigue crack initiated and grew for only about 0.38 mm
More
Image
in Failure Prevention through Life Assessment of Structural Components and Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 4 Fatigue cracking in an aircraft wing fitting for the F-111 aircraft 94 that crashed in 1969. (a) and (b) Location of the left wing pivot box fitting. The 23 mm (0.91 in.) material defect was not observed during inspection, and a fatigue crack initiated and grew for only approximately
More
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006821
EISBN: 978-1-62708-329-4
... components. In cases in which a failure resulted in a subsequent collision or crash, there may be multiple areas of mechanical damage imparted after the time of the initial failure. Vital aircraft components and, potentially, fracture surfaces may have endured subsequent deformation or damage...
Abstract
This article focuses on failure analyses of aircraft components from a metallurgical and materials engineering standpoint, which considers the interdependence of processing, structure, properties, and performance of materials. It discusses methodologies for conducting aircraft investigations and inspections and emphasizes cases where metallurgical or materials contributions were causal to an accident event. The article highlights how the failure of a component or system can affect the associated systems and the overall aircraft. The case studies in this article provide examples of aircraft component and system-level failures that resulted from various factors, including operational stresses, environmental effects, improper maintenance/inspection/repair, construction and installation issues, manufacturing issues, and inadequate design.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005163
EISBN: 978-1-62708-186-3
... of these advantages are: Weight reductions through reduced sheet thickness Safety improvement through high crash resistance Better appearance through elevated dent resistance Better performance through increased fatigue strength Cost reduction through reduced material use due to down-gaging Cost...
Abstract
This article provides information on the classification of high-strength steels (HSS) and advanced high-strength steels (AHSS) and tabulates designation of HSS and AHSS as recommended by the American Iron and Steel Institute. It reviews the major grades of HSS and AHSS that are used or will potentially be used in industrial applications. The article discusses different stamping issues such as edge cracking and springback, encountered during forming of AHSS, and lists guidelines for reducing springback in stamped components. It concludes with a discussion on the major advantages and disadvantages of using HSS and AHSS in automotive applications.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003474
EISBN: 978-1-62708-195-5
... appearance requirements, secondary structural needs (i.e., reduction of noise, vibration for harshness for structures such as body panels and hoods), high- or low-volume manufacturing and process drivers, cost, and crash safety. Secondary structural applications in many cases tend to trade off structural...
Abstract
This article discusses the advantages of polymer matrix composite for automotive application in terms of design drivers, noise, vibration, harshness efficiency, process materials property constraints, safety and reliability, design optimization, structural and appearance requirements, recyclability, and processability. It describes the properties of high-volume composites used in automotive industries. The article provides a discussion on state-of-the-art and developing technologies in automotive field.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006495
EISBN: 978-1-62708-207-5
... in pasted-electrode batteries) Implants (e.g., hip components with trabecular structures) Limiting the focus to Foaminal-type metal foams, several application groups can be found: Crash-energy absorption Lightweight design Damping One of the first serial products was developed...
Abstract
This article describes manufacturing procedures that produce aluminum foams and have since become industrially important and successful. It discusses the foaming of melts by blowing agents and foaming of melts by gas injection. The article focuses on aluminum foams based on the Foaminal technology, because those foams dominate the technical applications of aluminum foams. It also discusses the mechanical properties of metal foams, such as general compression behavior, elastic behavior, strain-rate sensitivity, tensile behavior, ductility, fatigue, and mechanical damping. The article concludes with information on the applications of highly porous metal structures.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006573
EISBN: 978-1-62708-210-5
... in alloy 365.0 according to Ref 3 : 0.13–0.19 % Mg for crash-relevant components and flanging technology. 0.18–0.28 % Mg for rigid and even crash safety components in presence of fatigue loads. 0.24–0.35 % Mg for components with high operating strength against impact stress. 0.28–0.35 % Mg...
Abstract
Alloy 365.0 and A365.0 are developed near eutectic Al-Si die-casting alloys with additions of manganese to reduce die soldering. This datasheet provides information on key alloy metallurgy, processing effects on tensile properties, and fabrication characteristics of these 3xxx series alloys.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006708
EISBN: 978-1-62708-210-5
..., and building and construction, to name a few. Many of the alloys are used in applications where toughness and energy absorption during a crash are important. Figure 1 shows relationships of some common 6 xxx alloys. With a yield strength comparable to that of mild steel, alloy 6061 is one of the most widely...
Abstract
The 6xxx series aluminum alloys are used across end applications including all forms of transportation, electronics, and building and construction. This article contains tables that list standard specifications for 6xxx series aluminum alloys and select specialty mill products. The relationships among commonly used alloys in the 6xxx series are illustrated.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005151
EISBN: 978-1-62708-186-3
... of this grade will have less desirable structural performance (including crash/safety) unless the gage of the steel is increased to compensate for the lack of strength. This countermeasure increases part weight and may not be an acceptable solution in today's (2006) mass-conscious environment. The narrow...
Abstract
This article focuses on the technology breakthroughs that make forming simulation a routine work throughout the industry. It discusses many forms of the computer-aided engineering (CAE) methodology. The article describes several failure criteria to predict the failure of sheet metal. It explains the numerical procedure for sheet metal forming and reviews the important technical issues in CAE simulations. The article provides information on the applications and process of metal-forming simulation. It also reviews the capabilities of major systems that are popular among sheet metal forming users worldwide.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0009152
EISBN: 978-1-62708-186-3
... the sensor in place and fills in the hole, creating a solid mounting for the sensor ( Ref 8 ). Fig. 7 Die plug sensor. Source: Ref 8 Displacement Sensors The primary purpose of displacement sensors is die protection, that is, to avoid die crash. Die crashes may occur due to material...
Abstract
This article discusses the installation of the most commonly used force-monitoring devices, namely, load cells and piezoelectric force sensors. It describes the purpose and operation of commonly used displacement sensors, such as linear variable differential transformers, proximity sensors, photoelectric sensors, and ultrasonic sensors. The article provides information on the sensors used for detecting tool breakages and flaws in parts, the measurement of material flow during sheet metal forming, and lubrication. It also describes the operating stages of machine vision systems used for automated quality-control purposes. The theory of eddy-current-based material properties evaluation is also discussed.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005187
EISBN: 978-1-62708-187-0
... and counterpressure casting/pressure-counterpressure casting, are equally able to provide crash-worthy products and can achieve better cavity counts than squeeze casting because metal is not injected or solidified under high pressure. However, those processes are best suited for thicker-walled parts, and semisolid...
Abstract
This article discusses the categories and subcategories of shape casting processes. These include single-use processes such as sand, plaster, ceramic, and graphite molding; essentially unpressurized multiuse processes, such as permanent mold; and high-pressure metal mold methods, such as die casting, squeeze casting, and semisolid processing. The article contains tables that compare some of the typical capabilities of shape casting processes.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003523
EISBN: 978-1-62708-180-1
Abstract
This article focuses on the general methods and approaches from the perspective of a reconstruction analyst and includes discussions relevant to materials failure analysts at the incident scene. The elements of accident reconstruction are described. These have conceptual similarity with the principles for failure analysis of material incidents that are less complex than a large-scale accident. The article provides a brief review of some general concepts on the use of modeling which can be a very powerful tool for information pertaining to the reconstruction of an accident where the model can be a physical, mathematical, or logical representation of a physical system or process.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006093
EISBN: 978-1-62708-175-7
... components with trabecular structures) Foaminal-type metal foams in particular have several applications: Crash energy absorption Lightweight design Damping A high-volume production was established with a small crash-energy-absorbing element for the safety net separating the passenger...
Abstract
Cellular or foam structures can be described by means of two broader cases: foams in which the pores are all connected to each other and with the environment (open-pore foams) and foams in which every single pore is completely enclosed by the matrix (closed-pore foams). This article describes the four process groups for the production of open- and closed-pore metal foams. It discusses the principles of the foaminal process with the description of various foaming agents, solidified metal foam, and geometries and derived structures of metal foams. The use of syntactic metal foam in various fields is included. The article reviews the mechanical properties of closed-pore metal foams, details the machining and joining procedures of the metal foams, and presents the applications of the metal foam.