Skip Nav Destination
Close Modal
Search Results for
Cr-Mo steels
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 182 Search Results for
Cr-Mo steels
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003821
EISBN: 978-1-62708-183-2
... acids as the Ni-Cr-Mo alloys, because of its lower molybdenum content, it is better than stainless steels in this respect. It also exhibits moderately high resistance to chloride-induced phenomena, such as pitting, crevice corrosion, and stress-corrosion cracking. Alloy 600 (N06600) is used as an...
Abstract
This article reviews the corrosion behavior in various environments for seven important nickel alloy families: commercially pure nickel, Ni-Cu, Ni-Mo, Ni-Cr, Ni-Cr-Mo, Ni-Cr-Fe, and Ni-Fe-Cr. It examines the behavior of nickel alloys in corrosive media found in industrial settings. The corrosive media include: hydrochloric acid, sulfuric acid, phosphoric acid, hydrofluoric acid, hydrobromic acid, nitric acid, organic acids, salts, seawater, and alkalis. The modes of high-temperature corrosion include oxidation, carburization, metal dusting, sulfidation, nitridation, corrosion by halogens, and corrosion by molten salts. Applications where the corrosion properties of nickel alloys are important factors in materials selection include the petroleum, chemical, and electrical power industries. Most nickel alloys are much more resistant than the stainless steels to reducing acids, such as hydrochloric, and some are extremely resistant to the chloride-induced phenomena of pitting, crevice attack, and stress-corrosion cracking (to which the stainless steels are susceptible). Nickel alloys are also among the few metallic materials able to cope with hot hydrofluoric acid. The conditions where nickel alloys suffer environmentally assisted cracking are highly specific and therefore avoidable by proper design of the industrial components.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003104
EISBN: 978-1-62708-199-3
... materials in each specific application. Performances of low-alloy martensitic steel grinding balls containing 0.80% C, 0.70% Mn, 0.30% Si, 0.20% Cr, 0.15% Mo, and 0.002% B (water quenched to 60 HRC) and pearlitic steel containing 0.80% C, 0.70% Mn, and 0.30% Si (oil quenched to give a fine pearlitic...
Abstract
Wear of metals occurs by plastic displacement of surface and near-surface material, and by detachment of particles that form wear debris. This article presents a table that contains the classification of wear. It describes the testing and evaluation of wear and talks about the abrasive wear, lubrication and lubricated wear, and selection of steels for wear resistance. The article discusses the effect of alloying elements, composition, and mechanical properties of carbon and low-alloy steels at elevated temperatures. It talks about the fatigue resistance characteristics of steels, and describes the forms of embrittlement associated with carbon and low-alloy steels. The article provides information on the effect of composition, manufacturing practices, and microstructure on notch toughness of steels. Finally, it explains the effects of alloy elements, inclusion content, microstructure and heat treatment on fracture toughness of steels.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000609
EISBN: 978-1-62708-181-8
... magnification. Note nucleus at bottom of each cavity. SEM, 3330× (R.H. Dauskardt and R.O. Ritchie, University of California) Fig. 601 Elevated-temperature fracture surface of Cr-Mo-V alloy steel specimen tensile tested at failure at 500 °C (930 °F) and an initial strain rate of 4.4 × 10 −5 /s...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of ASTM/ASME alloy steels and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the solidification cracking, creep failure, brittle fracture, fracture by overpressurization, inclusion effect, fatigue crack propagation, ductile fatigue striation, secondary cracking, intergranular fracture, and elevated-temperature fracture of alloy steels used in pressure vessels, steam boiler superheater tubes, and box-girder bridges.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003102
EISBN: 978-1-62708-199-3
... Composition, % C Mn Si Cr Other Alloy steel, Q and T (a) 0.29 1.30 0.52 0.37 0.36 Mo Manganese steel 1.22 13.08 0.33 0.09 0.05 Al Gray iron 2.79 0.75 1.32 0.10 … (a) Q and T, quenched and tempered Manganese steels are unequaled in their ability to work harden...
Abstract
Hadfield's austenitic manganese steel exhibits high toughness and ductility with high work-hardening capacity and, usually, good wear resistance. Beginning with an overview of the as-cast properties and composition of these class of steels, this article discusses the heat treatment methods used to improve their wear resistance, and the changes in the mechanical properties after heat treatment. Manganese steels are unequaled in their ability to work harden, exceeding even the metastable austenitic stainless steels in this feature.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003115
EISBN: 978-1-62708-199-3
... Abstract Stainless steels are iron-base alloys containing minimum of approximately 11% Cr, and owing to its excellent corrosion resistance, are used for wide range of applications. These applications include nuclear reactor vessels, heat exchangers, oil industry tubular, chemical processing...
Abstract
Stainless steels are iron-base alloys containing minimum of approximately 11% Cr, and owing to its excellent corrosion resistance, are used for wide range of applications. These applications include nuclear reactor vessels, heat exchangers, oil industry tubular, chemical processing components, pulp and paper industries, furnace parts, and boilers used in fossil fuel electric power plants. The article provides a brief introduction on corrosion resistance of wrought stainless steel and its designations. It lists the chemical composition and describes the physical and mechanical properties of five major stainless steel families, of which four are based on the crystallographic structure of the alloys, including martensitic, ferritic, austenitic, or duplex. The fifth is precipitation-hardenable alloys, based on the type of heat treatment used. The article further discusses the factors in the selection of stainless steel, namely corrosion resistance, fabrication characteristics, product forms, thermally induced embrittlement, mechanical properties in specific temperature ranges, and product cost.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003099
EISBN: 978-1-62708-199-3
... retained austenite Table 1 Nominal compositions of high-carbon bearing steels Grade Composition, % C Mn Si Cr Ni Mo AISI 52100 1.04 0.35 0.25 1.45 … … ASTM A 485-1 0.97 1.10 0.60 1.05 … … ASTM A 485-3 1.02 0.78 0.22 1.30 … 0.25 TBS-9 0.95 0.65 0.22...
Abstract
Rolling-element bearings, whether ball bearings or roller bearings with spherical, straight, or tapered rollers, are fabricated from a wide variety of steels. This article discusses the production process, characteristics, nominal compositions, and types of bearing steels. These include standard bearing steels, such as high-carbon bearing steels and carburizing bearing steels; and special-purpose bearing steels, such as high-temperature service bearing steels and corrosion-resistant bearing steels.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003100
EISBN: 978-1-62708-199-3
... grades Welded, bolted, or riveted structures, but mainly bolted or riveted bridges and buildings A 588 High-strength low-alloy structural steel with 345 MPa (50 ksi) minimum yield point ≤100 mm (4 in.) in thickness Nb, V, Cr, Ni, Mo, Cu, Si, Ti, Zr Plate, bar, and shapes ≤200 mm (8 in.) in...
Abstract
This article describes the types of steels, including high-strength structural carbon steels and high-strength low-alloy steels (HSLA), available in all standard wrought forms such as sheet, strip, plate, structural shapes, bars, bar-size shapes. It discusses the special sections that are characterized by higher yield strengths than those of plain carbon structural steels. The article tabulates the typical chemical compositions, tensile properties, heat treatment, product sizes, plate thickness and intended uses of high-strength steels. Further, it presents a short note on heat treated structural low-alloy grades.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003118
EISBN: 978-1-62708-199-3
... and liquids at elevated temperatures. These high-alloy cast steels generally have more than 10% Cr and primarily consist of stainless steel. Stainless steel castings are usually classified as either corrosion-resistant castings (which are used in aqueous environments below 650 °C, or 1200 °F) or heat...
Abstract
Cast stainless steels are widely used for their corrosion resistance in aqueous media at or near room temperature and for service in hot gases and liquids at elevated temperatures. This article provides a comparison between cast and wrought stainless steels in terms of composition, microstructure and properties. It discusses the grade designations and compositions of cast stainless steels. The article describes the mechanical properties, applications, and corrosion characteristics of corrosion-resistant steel castings and heat-resistant steel castings.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005414
EISBN: 978-1-62708-196-2
... = 0.83ε p 9 Cr-Mo steel (4120) ε p = 3.5 × 10 − 3 d 0 0.15 ε ˙ 0.17 exp ( 46,326 R T ) ε c = 0.83ε p 16 V-HSLA ε p = 6.05 × 10 − 4 d 0 0.32 ε ˙ 0.17 exp ( 55,530 R T ) ε c...
Abstract
Computer simulation of microstructural evolution during hot rolling of steels is a major topic of research and development in academia and industry. This article describes the methodology and procedures commonly employed to develop microstructural evolution models to simulate microstructural evolution in steels. It presents an example of the integration of finite element modeling and microstructural evolution models for the simulation of metal flow and microstructural evolution in a hot rolling process.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003092
EISBN: 978-1-62708-199-3
... 34 xx Ni 3.00; Cr 0.77 Molybdenum steels 40 xx Mo 0.20 and 0.25 44 xx Mo 0.40 and 0.52 Chromium-molybdenum steels 41 xx Cr 0.50, 0.80, and 0.95; Mo 0.12, 0.20, 0.25, and 0.30 Nickel-chromium-molybdenum steels 43 xx Ni 1.82; Cr 0.50 and 0.80; Mo 0.25 43BV xx...
Abstract
This article provides an overview of the different classification and designation systems of wrought carbon steel and alloy steel product forms with total alloying element contents not exceeding 5″. It lists the quality descriptors, chemical compositions, cast or heat composition ranges, and product analysis tolerances of carbon and alloy steels. The major designation systems discussed include the Society of Automotive Engineers (SAE)-American Iron and Steel Institute (AISI) designations, Unified Numbering System (UNS) designations, American Society for Testing and Materials (ASTM) designations, Aerospace Material Specification (AMS), and other international designations and specifications.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003813
EISBN: 978-1-62708-183-2
... pitting resistance number (PREN). The PREN is based on the composition of the alloy, and for super duplex stainless steels, the PREN should not be less than 40: PREN = % × Cr + 3.3 × % Mo + 16 × % N Table 2 shows the improved pitting resistance of these alloys. Table 2 Duplex...
Abstract
Cast stainless steels are usually specified on the basis of composition by using the alloy designation system established by the Alloy Casting Institute. This article discusses the corrosion behavior of heat-resistant alloys due to oxidation, sulfidation, and carburization. It describes the influence of the metallurgy of corrosion-resistant stainless steels on general corrosion, intergranular corrosion, localized corrosion, corrosion fatigue, and stress corrosion.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003811
EISBN: 978-1-62708-183-2
... Cast steel Composition (a) ,% Ni Cu Mn Cr V C Mo P S Si Other Carbon, grade A 0.10 0.13 0.61 0.21 0.03 0.14 trace 0.016 0.026 0.41 Nickel-chromium-molybdenum 0.56 0.13 0.80 0.60 0.04 0.26 0.15 0.44 1Ni-1.7Mn 1.08 0.08 1.70 0.08 0.04 0.27 0.02 0.023...
Abstract
Carbon and low-alloy steels are considered resistant only to very mild corrosives, while the various high-alloy grades are applicable for varying situations from mild to severe services, depending on the particular conditions involved. This article describes the factors that must be considered, by alloy casting users, in material selection. It presents compositions of cast steels tested in atmospheric corrosion in a tabular form. The rate of corrosion of a material in an environment can generally be estimated with confidence only from long-term tests. The article graphically presents the results of a research program that compared the corrosion resistance of nine cast steels in marine and industrial atmospheres. It illustrates the comparison of corrosion rates of cast steels, malleable cast iron, and wrought steel after 3 years of exposure in two atmospheres and provides the conclusions drawn from these tests.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003806
EISBN: 978-1-62708-183-2
... modifications in composition, which increase hardenability ( Ref 6 ). Fig. 8 Effects of molybdenum and manganese content on the sulfide stress cracking resistance of Mn-Ni-Cr-Mo-Nb and Mn-Cr-Mo-B steels. Open symbols are 400 mm (16 in.) section thickness; closed symbols are 250 mm (10 in.). Source: Ref 6...
Abstract
Low-alloy steels are used in a broad spectrum of applications. In some cases, corrosion resistance is a major factor in alloy selection; in other applications, it is only a minor consideration. This article reviews the applications of alloy steel products in four major industries, namely, oil and gas production, energy conversion systems, marine applications, and chemical processing. Emphasis is placed on the corrosion characteristics of the products, which are used in various applications of each industry.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001304
EISBN: 978-1-62708-170-2
... 3.50; Cr 1.50 and 1.57 34 xx Ni 3.00; Cr 0.77 Molybdenum steels 40 xx Mo 0.20 and 0.25 44 xx Mo 0.40 and 0.52 Chromium-molybdenum steels 41 xx Cr 0.50, 0.80, and 0.95; Mo 0.12, 0.20, 0.25, and 0.30 Nickel-chromium-molybdenum steels 43 xx Ni 1.82; Cr 0.50 and 0.80...
Abstract
This article discusses the classifications, compositions, properties, advantages, disadvantages, limitations, and applications of the most commonly used methods for surface engineering of carbon and alloy steels. These include cleaning methods, finishing methods, conversion coatings, hot-dip coating processes, electrogalvanizing, electroplating, metal cladding, organic coatings, zinc-rich coatings, porcelain enameling, thermal spraying, hardfacing, vapor-deposited coatings, surface modification, and surface hardening via heat treatment.
Book Chapter
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005673
EISBN: 978-1-62708-198-6
... the passivating film, which set up what is called a galvanic cell, producing corrosion. %Cr greater than 23–24 %Mo greater than 2 Stress-corrosion cracking Localized points of corrosion allow stresses initially unable to crack the steel to concentrate sufficiently to now do so, Details of the...
Abstract
Stainless steels are used for medical implants and surgical tools due to the excellent combination of properties, such as cost, strength, corrosion resistance, and ease of cleaning. This article describes the classifications of stainless steels, such as austenitic stainless steels, martensitic stainless steels, ferritic stainless steels, precipitation-hardening stainless steels, and duplex stainless steels. It contains a table lists common medical device applications for stainless steels. The article discusses the physical metallurgy, and physical and mechanical properties of the stainless steels. Medical device considerations for stainless steels, such as fatigue strength, corrosion resistance, and passivation techniques, are reviewed. The article describes the process features of the implant-grade stainless steels, including type 316L, type 316LVM, nitrogen-strengthened, ASTM F1314, ASTM F1586, ASTM F2229, and ASTM F2581 stainless steels.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003812
EISBN: 978-1-62708-183-2
... Compositions of standard grades of stainless steels UNS designation Type Composition (a) ; wt% C Mn P S Si Cr Ni Mo Others Austenitic grades S20100 201 0.15 5.5–7.5 0.060 0.030 1.00 16.0–18.0 3.5–5.5 … 0.25N S20200 202 0.15 7.5–10.0 0.060 0.030 1.00 17.0–19.0...
Abstract
This article provides an overview of the identification systems for various grades of wrought stainless steels, namely, the American Iron and Steel Institute numbering system, the Unified Numbering System, and proprietary designations. It elaborates on five major families of stainless steels, as defined by the crystallographic structure. These include ferritic stainless steels, austenitic stainless steels, martensitic stainless steels, and precipitation-hardening stainless steels. The mechanism of corrosion protection for stainless steels is reviewed. The article examines the effects of composition, processing, design, fabrication, and external treatments on the corrosion of stainless steels. Various forms of corrosion, namely, general, galvanic, pitting, crevice, intergranular, stress-corrosion cracking, erosion-corrosion, and oxidation, are reviewed. Corrosion testing for; corrosion in atmosphere, water, and chemical environments; and the applications of stainless steels in various industries are also discussed.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003090
EISBN: 978-1-62708-199-3
... that ferrite exists up above 12% Cr and is stable up to the melting point (liquidus temperature). An important fully ferritic family of steels is the iron-chromium ferritic stainless steels. These steels are resistant to corrosion, and are classified as type 405, 409, 429, 430, 434, 436, 439, 442, 444...
Abstract
The properties of irons and steels are linked to the chemical composition, processing path, and resulting microstructure of the material. For a particular iron and steel composition, most properties depend on microstructure. Processing is a means to develop and control microstructure, for example, hot rolling, quenching, and so forth. This article describes the role of these factors in both theoretical and practical terms, with particular focus on the role of microstructure. It lists the mechanical properties of selected steels in various heat-treated or cold-worked conditions. In steels and cast irons, the microstructural constituents have the names ferrite, pearlite, bainite, martensite, cementite, and austenite. The article presents four examples that have very different microstructures: the structural steel has a ferrite plus pearlite microstructure; the rail steel has a fully pearlitic microstructure; the machine housing has a ferrite plus pearlite matrix with graphite flakes; and the jaw crusher microstructure contains martensite and cementite.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003119
EISBN: 978-1-62708-199-3
... standard (MPIF) injection-molded stainless steels MPIF designation Composition (a) , wt% Fe Ni Cr Mo C Cu Nb + Ta Other (b) MIM-316L bal 10.0–14.0 16.0–18.0 2.0–3.0 0.03 … … 2.0 MIM-Duplex (316L) bal 7.5–8.5 19.0–21.0 1.5–2.5 0.03 … … 2.0 MIM-17-4 PH bal 3.0...
Abstract
Stainless steel powder metallurgy (P/M) parts represent an important and growing segment of the P/M industry. This article describes the processing, properties, and composition of medium-density and high-density P/M stainless steels. Medium-density materials are processed by pressing and sintering prealloyed stainless powders. High-density materials are produced by hot isostatic pressing, cold isostatic pressing followed by extrusion, or metal injection molding. The comparison of mechanical properties of these P/M stainless steels is represented graphically. The article contains a table that lists the effect of iron, carbon, nitrogen, oxygen, and density on the corrosion resistance of the sintered austenitic stainless steels.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005936
EISBN: 978-1-62708-166-5
... shows the dependence of K -values for the martensitic transformation on carbon content and loading direction for Ni-Cr-Mo steels determined using a special dilatometer described in Ref 53 and 54 . For lower carbon contents, K decreases, which shows that the Greenwood-Johnson effect is dominant...
Abstract
In the case of steels, heat treatment plays a fundamental role because no other process step can manipulate the microstructure in order to fulfill such a wide variety of possible in-service conditions. This article addresses heat treatment with regard to hardening and subsequent tempering of steel components in order to optimize tribological properties. It focuses on the heat treatment of tempering and bearing steels and on volume changes that take place due to phase transformations. Plastic deformations that occur due to shrinking and phase transformation are also discussed. The article also describes the generation of thermal, transformation, and hardening residual stresses.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003117
EISBN: 978-1-62708-199-3
... (for example, 28% Cr and 4% Mo) with additions of at least 0.25% Ni have shown good resistance in boiling 10% H 2 SO 4 , but corrode rapidly when acid concentration is increased. The conventional austenitic grades exhibit good resistance in very dilute or highly concentrated H 2 SO 4 at slightly...
Abstract
Selection of appropriate grades of steel will enable the steel to perform for very long times with minimal corrosion, but an inadequate grade can corrode and perforate more rapidly than a plain carbon steel will fail by uniform corrosion. This article describes the effect of chemical composition, heat treatment, welding, and surface condition on corrosion resistance of stainless steels. It discusses the various forms of corrosion and the important factors to be considered when selecting suitable stainless steel for application in specific corrosive environments.