Skip Nav Destination
Close Modal
By
Egbert Baake, Bernard Nacke
By
Fred R. Specht
By
Erwin Dötsch, Bernard Nacke
By
Joe Stambaugh
By
Valery Rudnev
By
Rob Goldstein, William Stuehr, Micah Black
By
Scott Larrabee, Andrew Bernhard
By
Robert Goldstein
By
Ronald R. Akers
Search Results for
Cooling coils
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 645
Search Results for Cooling coils
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
End of a water-cooled coil. This “bottle clip,” made of copper, allows the ...
Available to PurchasePublished: 01 January 2006
Fig. 3 End of a water-cooled coil. This “bottle clip,” made of copper, allows the coil to be electrically connected to the next coil by means of the laminated flexible connector and also provides a means of cooling water to pass through this coil and out the machine.
More
Image
Stainless steel nitrator cooling coil weld joint. Failure was caused by imp...
Available to PurchasePublished: 01 January 2003
Fig. 19 Stainless steel nitrator cooling coil weld joint. Failure was caused by improper design of the backing ring, which was not consumed during welding and left a crevice. Source: Ref 8
More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004160
EISBN: 978-1-62708-184-9
... to be about 350 in total, can develop water leaks ( Ref 5 ). These leaks allow cooling water to penetrate the coil insulation, reducing the dielectric strength of the insulation, eventually causing a phase-to-ground electrical fault in the generator. This will trip the unit off-line. Consequential damage...
Abstract
This article reviews the generator industry experience with stress-corrosion cracking of 18Mn-5Cr alloy retaining rings. It provides a description of corrosion of magnetic retaining rings. The article also discusses the primary repair alternatives to address crevice-corrosion cracking in water-cooled generators.
Image
(a) Furnace efficiency dependent on cooling water temperature. (b) Cooling ...
Available to Purchase
in Energy and Environmental Aspects of Induction Melting Processes
> Induction Heating and Heat Treatment
Published: 09 June 2014
Fig. 9 (a) Furnace efficiency dependent on cooling water temperature. (b) Cooling coil material
More
Book Chapter
Energy and Environmental Aspects of Induction Melting Processes
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005908
EISBN: 978-1-62708-167-2
...: Improvement of coil efficiency (increase of electrical conductivity of copper coil due to reduced cooling temperature, optimal copper coil tube profile) Optimal design of cooling coils (optimal profile and optimal material) Reduced crucible wall thickness with equal or even improved crucible life time...
Abstract
Induction processes for melting and heating of metals belong to the high-energy-consuming industrial processes, and continuous improvement of energy efficiency of competitive melting and heating technologies is of increasing interest. This article discusses the energy demand of various melting processes and the improvements in the efficiency of melting processes in induction crucible furnaces. It provides energetic and ecological comparisons of different furnaces for melting of cast iron and aluminum. The article also describes the energy and power management of induction melting processes.
Book Chapter
Maintenance of Induction Heat Treating Equipment
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005850
EISBN: 978-1-62708-167-2
..., computer systems, water cooling systems, fixtures and machines, air-operated or pneumatic devices, coils, and quench systems. It also presents simple rules that need to be applied while moving the equipment from one location to another. fixtures hardness test equipment hardness testing induction...
Abstract
Hardness testing equipment is important as all results from the induction equipment are graded by the hardness testing equipment. This article includes maintenance tips and points to consider regarding hardness test equipment, power supplies, controls, programmable logic controllers, computer systems, water cooling systems, fixtures and machines, air-operated or pneumatic devices, coils, and quench systems. It also presents simple rules that need to be applied while moving the equipment from one location to another.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005909
EISBN: 978-1-62708-167-2
...: charging wet or ice-containing material into liquid metal, and a metal runthrough that melts down the copper tube of the water-cooled induction or cooling coil. The first problem can and should be avoided by preheating the scrap (charge material) and by working in accordance with the instructions...
Abstract
Melting with induction crucible furnaces (ICFs) is a well-established and reliable technology, and their maintenance must be performed at regularly scheduled intervals to ensure safe operation. This article discusses monitoring of the refractory lining, and presents an overview of the various wear-indication methods, namely, manual checks, ground leakage indication, evaluation of electrical values of the furnace, and temperature measurement. It also presents the working principle, physical restrictions, limitations, and remarks on these methods.
Book Chapter
Components and Design of Induction Crucible Furnaces
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005899
EISBN: 978-1-62708-167-2
... the reactions described, because this forms when melting cast iron due to the temperature progression over the wall thickness of 120 mm (4.7 in.). Assuming that the surface temperature of the water-cooled copper profile of the coil is 100 °C (212 °F), the temperature in the 20 mm (0.8 in.) thick coil grouting...
Abstract
This article provides a detailed discussion on the components of a high-performance induction crucible furnace system, namely, furnace body, power supply, and peripheral components. The furnace body contains refractory lining, coil and transformer yokes, and tilting frame and furnace cover. The power supply consists of the following: transformers, frequency converters, capacitor banks, and power cables and furnace coils. The peripheral components comprise recooling device, charging system, and skimming devices. The article also presents a three-dimensional representation of the induction crucible furnace system.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005924
EISBN: 978-1-62708-166-5
..., including cooling systems, power supplies, heat stations, work handling fixtures, induction or work coils, and quench systems. The article discusses the influence of system elements on induction heat treating system design. It also deals with the general theory, types, and applications of induction coils...
Abstract
Induction heating has many different applications, such as melting, heating stock for forging, and heat treating. This article begins with a discussion on the types of power supplies, namely, solid-state power supplies and oscillator tubes. It provides information on system elements, including cooling systems, power supplies, heat stations, work handling fixtures, induction or work coils, and quench systems. The article discusses the influence of system elements on induction heat treating system design. It also deals with the general theory, types, and applications of induction coils.
Image
Arrangement of spray quench to cool through the turns of a coil on a spindl...
Available to PurchasePublished: 09 June 2014
Image
Simulation of the progress of recrystallization during coil cooling (self-a...
Available to Purchase
in Simulation of Microstructure and Texture Evolution in Aluminum Sheet
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 15 Simulation of the progress of recrystallization during coil cooling (self-annealing) of AA 3104 hot strip produced with different exit temperatures
More
Book Chapter
Design and Fabrication of Induction Coils for Heating Bars, Billets, and Slabs
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005840
EISBN: 978-1-62708-167-2
... or bar is inserted and rolls through the induction coil via gravity with the help of an end-pusher device, and then is ejected from the coil via a water-cooled eject device mounted on the end of a pneumatic cylinder. Fig. 2 Wide oval coil used to heat bar ends. Courtesy of Ajax Tocco Magnethermic...
Abstract
This article is a compilation of best practices, materials, and techniques for the design and manufacture of modern induction forge coils. It presents the basics of induction coil design along with various design considerations, namely, copper tube selection, water flow considerations, and brazing and fabricating the copper coil winding for heating billets, bars, and slabs. The article describes refractory selection criteria and the methods of mounting and securing the induction coil winding, and presents general refractory installation guidelines for induction heating applications. It provides information on curing, form removal, dryout, and coil refractory seasoning. Wear rails that are designed to prevent damage to the coil refractory and subsequent coil winding are also discussed. The article concludes with a discussion on preventive maintenance practices for induction forging coils.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005911
EISBN: 978-1-62708-167-2
... related to glass melting, but that used induction heating, was authored by Jean Reboux in 1969. He used an induction coil surrounding a series of longitudinal tubular elements that were electrically insulated from each other and water cooled ( Ref 11 ). These elements made up a cylinder...
Abstract
The historical use of induction heating relating to glass melting gives some insight into its use in today's glass manufacturing industry. A patent search on induction heating provides historical information about how induction heating was used in the glass melting industry, from both a direct fired or a susceptor/container approach. This article provides review of historical patents, following an introduction to conductivity in glass and electrical heating. The purpose is to show that induction heating has been and is being used in the glass melting industry.
Book Chapter
Systematic Analysis of Induction Coil Failures and Prevention
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005842
EISBN: 978-1-62708-167-2
... of a crack in the coil copper ( Ref 9 ). Although alloying copper can noticeably improve certain mechanical properties and corrosion resistance, it also reduces the thermal conductivity of the material. This decreases the capability of water-cooled passages to reduce the localized overheating caused...
Abstract
This article focuses on the frequently encountered causes of induction coil failures and typical failure modes in fabrication of hardening inductors, tooth-by-tooth gear-hardening inductors, clamshell inductors, contactless inductors, split-return inductors, butterfly inductors, and inductors for heating internal surfaces. It discusses the current density distribution and the skin effect, the proximity effect, and crack-propagation specifics. The article also describes selected properties of copper alloys, the electromagnetic edge effect of coil copper turn, and the effect of magnetic flux concentrators on coil life. It also reviews the importance of having appropriate and reliable electrical contacts.
Book Chapter
Cast Iron Melting Furnaces
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006337
EISBN: 978-1-62708-179-5
... metal forms the secondary of the electrical circuit. In contrast, the entire metal content of an ICF is the secondary circuit. Fig. 11 Channel-type induction furnace. (a) Cross section of throat and channel portion around the water-cooled copper induction coil. (b) Primary current around the iron...
Abstract
Various types of furnaces have been used for cast iron melting. In terms of tonnage, the primary melting methods used by iron casting facilities are cupola and induction furnaces. This article describes the operation and control principles of cupola furnace. It discusses the advantages of specialized cupolas such as cokeless cupola and plasma-fired cupola. Melting in iron foundries is a major application of induction furnaces. The article describes the operations of two induction furnaces: the channel induction furnace and the induction crucible furnace. It explains the teapot principle of pressure-actuated pouring furnaces and provides information on the effect of pouring magnesium-treated melts.
Book Chapter
Design and Fabrication of Inductors for Induction Heat Treating
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005839
EISBN: 978-1-62708-167-2
... checking, silver plating, and electrical parameter measurement. electrical contacts frequency induction coil cooling induction coils induction heat treating magnetic flux concentrators quenching silver plating sintered ferrite spindles FOR INDUCTION MELTING AND MASS HEATING, the early...
Abstract
This article provides information on single-shot and scanning, the two types of induction heat treating processes that are based on whether the induction coil is moving relative to the part during the heating process. It describes the effect of the frequency of induction heating current on the induction coil and process design, and the control of heating in different areas of the inductor part. The article reviews three main tools for adjustment of coil design and fabrication: coupling gap, coil copper profile, and magnetic flux controllers. It examines the method of holding a part and presenting it to the inductor during the initial inductor design. The article provides information on coil leads/busswork and contacts that mechanically and electrically connect the induction coil head to the power supply. It concludes with a discussion on flux and oxide removal, leak and flow checking, silver plating, and electrical parameter measurement.
Book Chapter
Design and Fabrication of Inductors for Heat Treating, Brazing, and Soldering
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005841
EISBN: 978-1-62708-167-2
... area is directly related to required hardness pattern. Well-defined heating pattern—depth and width; coil area may be smaller than area to be heat treated. Entire braze joint area. To control cooling/heating rates of the joint area, it is often required to heat beyond the joint area. Type...
Abstract
Inductors used for brazing can be machined from solid copper shapes or fabricated out of copper tubing, depending on the size and complexity of the braze joint geometry to be heated. This article provides information on inductors (coils) that are generally classified as solenoid, channel (slot), pancake, hairpin, butterfly, split-return, or internal coils. It discusses the variables pertinent to the design of inductors for brazing, soldering, or heat treating. The article presents various considerations for designing inductors for brazing of dissimilar materials that present a unique challenge in the field of induction brazing.
Book Chapter
Magnetic Flux Controllers in Induction Heating and Melting
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005846
EISBN: 978-1-62708-167-2
.... The article also describes the benefits of the flux controllers for induction heat treating processes such as single-shot and scanning. channel type furnaces continuous induction tube welding cooling crucible furnaces induction coils induction melting inductor crucible cold furnaces magnetic flux...
Abstract
Magnetic flux controllers are materials other than the copper coil that are used in induction systems to alter the flow of the magnetic field. This article describes the effects of magnetic flux controllers on common coil styles, namely, outer diameter coils, inner diameter coils, and linear coils. It provides information on the role of magnetic flux controllers for whole-body and local area mass-heating applications, continuous induction tube welding, seam-annealing inductors, and various induction melting systems, namely, channel-type, crucible-type, and cold crucible systems. The article also describes the benefits of the flux controllers for induction heat treating processes such as single-shot and scanning.
Book Chapter
Localized Heat Treating
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003200
EISBN: 978-1-62708-199-3
..., and equipment cooling systems as part of an induction heating package. Power Supplies Besides the induction coil and workpiece, the power supply is probably the most important component of an overall induction heating system. The function of the power supply is to accept power from a line at 60 Hz (50 Hz...
Abstract
This article discusses the fundamentals and applications of localized heat treating methods: induction hardening and tempering, laser surface transformation hardening, and electron-beam heat treatment. The article provides information about equipment and describes the selection of frequency, power, duration of heating, and coil design for induction hardening. The article also discusses the scope, application, methods, and operation of flame hardening.
Book Chapter
Vertical Scanners, Horizontal Scanners, and Tooth by Tooth Scanners
Available to PurchaseSeries: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005847
EISBN: 978-1-62708-167-2
..., with the most common design being the machined integral quench (MIQ) coil. Machined integral quench coils are machined from one piece of copper with the water- cooled coil on the inside diameter (ID) and the quench chamber surrounding it, with the quench generally exiting from a plane level with the bottom...
Abstract
Scanners are the most versatile and flexible of the equipment available to the heat treating industry for induction hardening. This article provides a general overview of scanners, and describes various critical factors, including scan speeds, rotational speeds, and center total indicator runout of vertical scanners. It presents information on the frequency selection parameters for scanning applications. The article also discusses the critical parameters and production rates in specifying and developing a tooth-by-tooth hardening process.
1