Skip Nav Destination
Close Modal
Search Results for
Coble creep
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 22 Search Results for
Coble creep
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004020
EISBN: 978-1-62708-185-6
..., followed by the models of constitutive behavior. It provides a discussion on creep mechanisms involving dislocation and diffusional flow, such as the Nabarro-Herring creep and the Coble creep. The equations for the several creep rates are also presented. Research on the mechanism of the superplastic flow...
Abstract
The constitutive relations for metalworking include elements of behavior at ambient temperature as well as high-temperature response. This article presents equations for strain hardening and strain-rate-sensitive flow, with alternate sections on empirically determined properties, followed by the models of constitutive behavior. It provides a discussion on creep mechanisms involving dislocation and diffusional flow, such as the Nabarro-Herring creep and the Coble creep. The equations for the several creep rates are also presented. Research on the mechanism of the superplastic flow in fine-grain metals has encompassed many ideas, such as the diffusional creep, dislocation creep with diffusional accommodation at grain boundaries, and concepts of grain-mantle deformation. The article concludes with information on the kinetics of superplastic deformation processes, including low stress behavior, concurrent grain growth, and high stress behavior.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005183
EISBN: 978-1-62708-186-3
... creep mechanisms that are useful for illustrating the strong stress dependence of dislocation and diffusional flow. ambient temperature Isothermal constitutive modeling physical models strain hardening strain-rate-sensitive flow superplastic flow CONSTITUTIVE RELATIONS for metalworking...
Abstract
Constitutive relations for metal-working include elements of behavior at ambient temperature as well as high-temperature response. This article presents the equations for the strain hardening and strain-rate-sensitive flow, with alternate sections on empirically determined properties, followed by models of constitutive behavior. These models include the isothermal constitutive model and the physical model for superplastic flow. A formal description of the superposition of the operative mechanisms for dynamic recovery at hot-working strain rates is also provided. The article describes creep mechanisms that are useful for illustrating the strong stress dependence of dislocation and diffusional flow.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005433
EISBN: 978-1-62708-196-2
... and accommodation by dislocations. Diffusional Accommodation Models During the later part of 1960s, there were attempts to explain region II in Fig. 1 (the superplastic regime) using diffusional creep models ( Ref 18 , 19 ). Both Nabarro-Herring ( Ref 20 , 21 ) and Coble creep ( Ref 22 ) were also...
Abstract
This article presents a mechanical description of superplasticity and discusses constitutive equations that are essential for simulating superplastic forming processes, applicable to structural superplasticity. It presents the phenomenological constitutive equations of superplasticity and classical physical constitutive equations. The article also reviews the accommodation mechanisms that are divided into two major groups, namely, diffusional accommodation and accommodation by dislocations.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005404
EISBN: 978-1-62708-196-2
... to be δb d , where δb is a measure of the thickness of the grain boundary. In most cases, δ is a dimensionless constant with a value of ∼1. As is expected, the creep strain rates for Coble creep are highly sensitive to the grain size of the material. Small grain sizes allow for large grain-boundary areas...
Abstract
This article, to develop an understanding of the underlying mechanisms governing deformation at elevated temperatures, discusses the phenomenological effects resulting from temperature-induced thermodynamic and kinetic changes. It describes the deformation behavior of engineering materials using expressions known as constitutive equations that relate the dependence of stress, temperature, and microstructure on deformation. The article reviews the characteristics of creep deformation and mechanisms of creep, such as power-law creep, low temperature creep, power-law breakdown, diffusional creep, twinning during creep deformation, and deformation mechanism maps. It discusses the creep-strengthening mechanisms for most structural engineering components. The article provides a description of the microstructural modeling of creep in engineering alloys.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003287
EISBN: 978-1-62708-176-4
... by δ D gb / d , where δ is the grain boundary width and D gb is the grain boundary diffusivity. As a consequence, the creep rate varies as d −3 when diffusion occurs via grain boundaries; this mechanism is known as Coble creep. Thus, the grain size exponent can be used to distinguish between...
Abstract
Creep deformation is normally studied by applying either a constant load or a constant true stress to a material at a sufficiently high homologous temperature so that a measurable amount of creep strain occurs in a reasonable time. This article provides the phenomenological descriptions of creep and explains the testing and mechanism of creep in crystalline solids. It also presents information on the creep response of crystalline and amorphous solids.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002460
EISBN: 978-1-62708-194-8
Abstract
This article focuses on the relationships among material properties and material structure. It summarizes the fundamental characteristics of metals, ceramics, and polymers. The article provides information on the crystal structure, the atomic coordination, and crystalline defects. It discusses the relevance of the properties to design. The article describes the common means for increasing low-temperature strength and presents an example that shows structure-property relationships in nickel-base superalloys for high-temperature applications. The relationships of microstructure with low-temperature fracture, high-temperature fracture, and fatigue failure are also discussed.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006557
EISBN: 978-1-62708-290-7
... such as argon, nitrogen, and helium are often used in the processing environments for metal components. There are four main mechanisms by which pores are eliminated by HIP: plastic flow, power-law creep, Coble (grain-boundary) creep, and Nabarro-Herring (lattice) creep ( Ref 30 ). In sum, all mechanisms...
Abstract
The formation of defects within additive-manufactured (AM) components is a major concern for critical structural and cyclic load applications. Thus, understanding the mechanisms of defect formation in fusion-based processes is important for prescribing the appropriate process parameters specific to the alloy system and selected processing technique. This article discusses the formation of defects within metal additive manufacturing, namely fusion-based processes and solid-state/sintering processes. Defects observed in fusion-based processes include lack of fusion, keyhole collapse, gas porosity, solidification cracking, solid-state cracking, and surface-connected porosity. The types of defects in solid-state/sintering processes are sintering porosity and improper binder burnout. The article also discusses defect-mitigation strategies, such as postprocess machining, surface treatment, and postprocessing HIP to eliminate defects detrimental to properties from the as-built condition. The use of noncontact thermal, optical, and ultrasound techniques for inspecting AM components are also considered. The final section summarizes the knowledge gap in our understanding of the defects observed within AM components.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003266
EISBN: 978-1-62708-176-4
... creep ( Ref 10 ). In diffusional creep, diffusion of single atoms or ions, either by bulk transport (Nebarro-Herring creep) or by grain-boundary transport (Coble creep) leads to Newtonian viscous flow. In this type of creep, steady-state creep rates vary linearly. At low stresses, diffusional creep...
Abstract
This article emphasizes short-term tension and compression testing of metals at high temperatures. It describes the effect of temperature on deformation and strain hardening, occurrence of high-temperature creep in structural alloys, and the performing of mechanical testing for high-temperature structural alloys. The article discusses hot tension testing and measurements of temperature and strain in the hot tension testing. It also provides an overview of hot compression testing.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005512
EISBN: 978-1-62708-197-9
... on the properties (yield stress, creep behavior, diffusion constants) of the materials being joined and on the condition of the two faying surfaces. Typically, the two surfaces to be bonded are far from smooth on the atomic scale, and the initial contact area between the two surfaces constitutes a very small...
Abstract
The goals of modeling diffusion bonding can be regarded as twofold: to optimize the selection of the process variables for a given material and to provide an understanding of the mechanisms by which bonding is achieved. This article describes the existing models of diffusion bonding with an assumption that the surfaces to be joined are free of contaminants and oxide, that bonding occurs between similar materials, and that the materials are single-phase metals. It discusses the mechanisms considered for diffusion bonding and limitations of existing models.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003288
EISBN: 978-1-62708-176-4
... ). Fortunately, all these mechanisms can be fitted into two basic categories: diffusional creep and dislocation creep. In diffusional creep, diffusion of single atoms or ions either by bulk transport (Nabarro-Herring creep) or by grain-boundary transport (Coble creep) leads to a Newtonian viscous type...
Abstract
This article reviews the basic equipment and methods for creep and creep rupture testing. It begins with a discussion on the creep properties, including stress and temperature dependence, as well as of the extrapolation techniques that permit estimation of the long-term creep and rupture strengths of materials. The article describes the different types of equipment for determination of creep characteristics, including test stands, furnaces, and extensometers. It also discusses the different testing methods for creep rupture: constant-load testing and constant-stress testing. The article presents other testing considerations and concludes with information on stress relaxation testing.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002472
EISBN: 978-1-62708-194-8
... and strain components associated with creep processes; stress and temperature dependence; fracture at elevated temperatures; and environmental effects. The article describes the basic presentation and analysis methods for creep rupture. It provides information on the application of these methods to materials...
Abstract
This article reviews the basic mechanisms of elevated-temperature behavior and associated design considerations, with an emphasis on metals. It discusses the key concepts of elevated-temperature design. These include plastic instability at elevated temperatures; deformation mechanisms and strain components associated with creep processes; stress and temperature dependence; fracture at elevated temperatures; and environmental effects. The article describes the basic presentation and analysis methods for creep rupture. It provides information on the application of these methods to materials selection and the setting of basic design rules. The article examines the limitations of high-temperature components as well as the alternative design approaches and tests for most high-temperature components.
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005606
EISBN: 978-1-62708-174-0
... contact: limited to a few asperities (room temperature). (b) First stage: deformation of surface asperities by plastic flow and creep. (c) Second stage: grain-boundary diffusion of atoms to the voids and grain-boundary migration. (d) Third stage: volume diffusion of atoms to the voids During...
Abstract
This article provides a qualitative summary of the theory of diffusion bonding, as distinguished from the mechanisms of other solid-state welding processes. Diffusion bonding can be achieved for materials with adherent surface oxides, but the resultant interface strengths of these materials are considerably less than that measured for the parent material. The article describes three stages of diffusion bonding: microasperity deformation, diffusion-controlled mass transport, and interface migration. It concludes with information on diffusion bonding with interface aids.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001350
EISBN: 978-1-62708-173-3
... bonding process. (a) Initial contact: limited to a few asperities (room temperature). (b) First stage: deformation of surface asperities by plastic flow and creep. (c) Second stage: grain boundary diffusion of atoms to the voids and grain boundary migration. (d) Third stage: volume diffusion of atoms...
Abstract
Diffusion bonding is only one of many solid-state joining processes wherein joining is accomplished without the need for a liquid interface (brazing) or the creation of a cast product via melting and resolidification. This article offers a qualitative summary of the theory of diffusion bonding. It discusses factors that affect the relative difficulty of diffusion bonding oxide-bearing surfaces. These include surface roughness prior to welding, mechanical properties of the oxide, relative hardness of the metal and its oxide film, and prestraining or work hardening of the material. The article describes the mechanism of diffusion bonding in terms of microasperity deformation, diffusion-controlled mass transport, and interface migration. It concludes with a discussion on diffusion bonding with interface aids.
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006552
EISBN: 978-1-62708-290-7
... densifying mechanism until more diffusion-based creep processes take over, such as Nabarro-Herring creep, or bulk creep, and Coble creep, or grain-boundary creep ( Ref 4 , 5 ). With these densification mechanisms and a sufficiently long soak time at HIP conditions, internal defects can be completely erased...
Abstract
Hot isostatic pressing (HIP) is widely used within the additive manufacturing (AM) industry to improve material performance and ensure quality. This article is a detailed account of the HIP process, providing information on its equipment set up and discussing the applications, economics, and advantages of the process. The discussion also covers the use of HIP for additively manufactured material to eliminate internal defects, the HIP parameters required to eliminate internal defects, and the influence of HIP on the microstructure and properties of HIP additively manufactured material.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005293
EISBN: 978-1-62708-187-0
... 247, René 125) 1185 2165 175 25 4 Mechanisms of Pore Closure during HIP There are four main mechanisms by which pores are eliminated during HIP: Plastic flow Power law creep Coble (grain-boundary) creep Nabarro-Herring (lattice) creep Given appropriate temperature...
Abstract
Hot isostatic pressing (HIP) is used to eliminate porosity in castings. This article provides a history and an overview of the HIP system. It illustrates the reasons for using HIP and discusses the criteria for selecting HIP process parameters. The main mechanisms by which pores are eliminated during HIP are reviewed. The article describes the effect of HIP on the mechanical properties, shape, and structure of castings as well as the effect of inclusions on as-HIPed properties. It examines the problems encountered in HIP and their solution. The article concludes with information on the economics of HIP processing.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006042
EISBN: 978-1-62708-175-7
...-dependent densification mechanisms take over. Power-law creep becomes the dominant mechanism for a short period of time until Nabarro-Herring creep and Coble creep diffusion mechanisms take over. Professor Michael Ashby and his research group at Cambridge University, United Kingdom, provided an extensive...
Abstract
This article discusses metal powder processing via hot isostatic pressing (HIP) and HIP cladding when metal powders are being employed in the cladding process. It traces the history of the process and details the equipment, pressing cycle, and densification mechanisms for HIP. The article describes the available process routes for fabricating products using HIP and the steps involved in the production of a part via direct HIP of encapsulated gas-atomized spherical powder. It concludes with information on the microstructures of 316L stainless steel HIP powder metallurgy valve body and a list of the mechanical properties of several powder metallurgy alloys.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006117
EISBN: 978-1-62708-175-7
... on primary variables derived for single mechanism Frenkel ( Ref 12 ); Kuczynski ( Ref 13 ); Kingery and Berg ( Ref 14 ); Coble ( Ref 15 ); Coble ( Ref 16 ); Johnson ( Ref 17 ); Beeré ( Ref 18 ) Numerical simulations Equations for matter transport solved numerically. Complex geometry and concurrent...
Abstract
Sintering is a thermal treatment process in which a powder or a porous material, already formed into the required shape, is converted into a useful article with the requisite microstructure. Sintering can be classified as solid-state, viscous, liquid-phase, and pressure-assisted (or pressure) sintering. This article provides information on the mechanisms and theoretical analysis of sintering and focuses on the types, mechanisms, process and microstructural variables, computer simulation, stages, and fundamentals of densification and grain growth of solid-state sintering and liquid-phase sintering. It describes the models for viscous sintering and the methods used in pressure-assisted sintering, namely, uniaxial hot pressing, hot isostatic pressing, sinter forging, and spark plasma sintering.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... salts or metals can induce other secondary mechanisms, such as galvanic corrosion, crevice corrosion, and pitting corrosion; creep; and fatigue. Impingement by solid particles can contribute to erosion-corrosion, or it can accelerate corrosion in the various gaseous and molten environments. Primary...
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001831
EISBN: 978-1-62708-181-8
...-corrosion cracking (SCC). Decohesive rupture resulting from creep fracture mechanisms is discussed at the end of this section. The fracture of weak grain-boundary films (such as those resulting from grain-boundary penetration by low melting point metals), the rupture of melted and resolidified grain...
Abstract
This article begins with a discussion of the basic fracture modes, including dimple ruptures, cleavages, fatigue fractures, and decohesive ruptures, and of the important mechanisms involved in the fracture process. It then describes the principal effects of the external environment that significantly affect the fracture propagation rate and fracture appearance. The external environment includes hydrogen, corrosive media, low-melting metals, state of stress, strain rate, and temperature. The mechanism of stress-corrosion cracking in metals such as steels, aluminum, brass, and titanium alloys, when exposed to a corrosive environment under stress, is also reviewed. The final section of the article describes and shows fractographs that illustrate the influence of metallurgical discontinuities such as laps, seams, cold shuts, porosity, inclusions, segregation, and unfavorable grain flow in forgings and how these discontinuities affect fracture initiation, propagation, and the features of fracture surfaces.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003054
EISBN: 978-1-62708-200-6
..., as determined by mechanical properties (especially creep), is approximately 1500 °C (2730 °F). High temperatures can be achieved using tungsten heating elements, which can be fabricated as hairpins as molybdenum is or as a mesh element for ultrahigh-temperature applications. The temperature-resistance...
Abstract
Sintering provides the interparticle bonding that generates the attractive forces needed to hold together the otherwise loose ceramic powder mass. It also improves hardness, strength, transparency, toughness, electrical conductivity, thermal expansion, magnetic saturation, corrosion resistance, and other properties. This article discusses the fundamentals of sintering and its effects on pore structures and particle density. It addresses some of the more common sintering methods, including solid-state, liquid-phase, and gas pressure sintering, and presents alternative processes such as reaction sintering and self-propagating, high-temperature synthesis. It also describes several pressure densification methods, including hot isostatic pressing, gas pressure sintering, molten particle deposition, and sol-gel processing. The article concludes with a section on grain growth that discusses the underlying mechanisms and kinetics and the relationship between grain growth and densification.
1