Skip Nav Destination
Close Modal
Search Results for
Charpy V-notch test
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 320
Search Results for Charpy V-notch test
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1987
Fig. 36 Plot of absorbed-energy Charpy V-notch test data for Fe-1Mn steels finished at different temperatures (indicated on graph). Source: Ref 83
More
Image
Published: 01 January 2003
Image
Published: 01 December 1998
Fig. 16 Standard side-grooved Charpy V-notch test specimen used for three- and four-point bend tests
More
Image
Published: 01 January 1996
Fig. 28 Characteristics of the transition-temperature range for Charpy V-notch testing of low-carbon steel plate, as determined by (a) fracture energy, (b) fracture appearance, and (c) fracture ductility. The drawings at lower right in the graphs indicate: (a) orientation of the specimen notch
More
Image
Published: 01 January 2000
Fig. 2 Characteristics of the transition-temperature range for Charpy V-notch testing of low-carbon steel plate, as determined by (a) fracture energy, (b) fracture appearance, and (c) fracture ductility. The drawings at lower right in the graphs indicate: (a) orientation of the specimen notch
More
Image
Published: 01 January 2000
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001040
EISBN: 978-1-62708-161-0
... that simultaneously influence notch toughness. With the exception of working direction, most of the same chemical, microstructural, and manufacturing factors that influence the notch toughness of wrought steels also apply to cast steels. The Charpy V-notch test is used worldwide to indicate the ductile-to-brittle...
Abstract
Notch toughness is an indication of the capacity of a steel to absorb energy when a stress concentrator or notch is present. The notch toughness of a steel product is the result of a number of interactive effects, including composition, deoxidation and steelmaking practices, solidification, and rolling practices, as well as the resulting microstructure. All carbon and high-strength low-alloy (HSLA) steels undergo a ductile-to-brittle transition as the temperature is lowered. The composition of a steel, as well as its microstructure and processing history, significantly affects both the ductile-to-brittle transition temperature range and the energy absorbed during fracture at any particular temperature.. Th article focuses on various aspects of notch toughness including the effects of composition and microstructure, general influence of manufacturing practices and the interactive effects that simultaneously influence notch toughness. With the exception of working direction, most of the same chemical, microstructural, and manufacturing factors that influence the notch toughness of wrought steels also apply to cast steels. The Charpy V-notch test is used worldwide to indicate the ductile-to-brittle transition of a steel. While Charpy results cannot be directly applied to structural design requirements, a number of correlations have been made between Charpy results and fracture toughness.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001034
EISBN: 978-1-62708-161-0
... of welds. The major tests that are discussed in this article are weld tension test, bend test, the drop-weight test, the Charpy V-notch test, the crack tip opening displacement test, and stress-corrosion cracking test. arc welding cold cracking fabrication hot cracking low-alloy steels...
Abstract
This article aims to survey the factors controlling the weldability of carbon and low-alloy steels in arc welding. It discusses the influence of operational parameters, thermal cycles, and metallurgical factors on weld metal transformations and the susceptibility to hot and cold cracking. The article addresses the basic principles that affect the weldability of carbon and low-alloy steels. It outlines the characteristic features of welds and the metallurgical factors that affect weldability. It describes the common tests to determine steel weldability. There are various types of tests for determining the susceptibility of the weld joint to different types of cracking during fabrication, including restraint tests, externally loaded tests, underbead cracking tests, and lamellar tearing tests. Weldability tests are conducted to provide information on the service and performance of welds. The major tests that are discussed in this article are weld tension test, bend test, the drop-weight test, the Charpy V-notch test, the crack tip opening displacement test, and stress-corrosion cracking test.
Image
Published: 01 January 2002
Fig. 26 Charpy V-notch and DWTT test data for failure in a 915-mm (36-in.) outside-diameter × 10-mm (0.406-in.) wall-thickness API, grade X52, pipe. A length, cleavage arrest; B and C lengths, cleavage-fracture propagation
More
Image
Published: 01 December 2008
Fig. 4 Room-temperature Charpy V-notch impact test values versus carbon content of cast steels in normalized-and-tempered condition. Tempering temperature: 650 °C (1200 °F)
More
Image
Published: 01 December 1998
Fig. 24 Notched-bar impact-test specimens. (a) Simple beam V-notch Charpy specimen. (b) Simple beam keyhole-notch Charpy specimen. (c) Cantilever beam notched Izod specimen. Source: Notched Bar Impact Testing of Metallic Materials, E 23-81, ASTM, 1981
More
Image
Published: 01 January 2001
Fig. 17 Charpy V-notch impact energy versus test temperature. (a) Laminated ultrahigh carbon steel (UHCS)/mild steel composite compared to constituent alloys. (b) Effect of interface condition on impact behavior of UHCS/mild steel laminated composite (heat treating produced a strong interface
More
Image
Published: 01 January 1993
Fig. 12 Charpy V-notch impact energy test results used to obtain ductile-to-brittle transition temperature (−10 °C, or 14 °F) for the 1.07 m (42 in.) diameter X-65 steel pipe
More
Image
Published: 01 January 1993
Fig. 12 Charpy V-notch values versus test temperature for two martensitic stainless steel filler metals. Source: Ref 13
More
Image
Published: 01 January 1993
Fig. 8 Charpy V-notch impact test results from gas-tungsten arc welded E-Brite 26-1 plate. Weld conditions: plate thickness, 6 mm ( 1 4 in.); shielding/backing gas, argon; shielding/backing gas impurity levels, H 2 O 40 ppm and O 2 20 ppm; shielding gas flow rate, 28 L/min (60 ft 3
More
Image
Published: 01 January 1996
Fig. 22 Charpy V-notch energy as a function of test temperature for a type 308 gas-tungsten arc weld, aged at 475 and 550 °C. Source: Ref 70
More
Image
in High-Strength Structural and High-Strength Low-Alloy Steels
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 19 Typical transition behavior for HSLA steel without inclusion shape control. Data determined on half-size Charpy V-notch test specimens
More
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003308
EISBN: 978-1-62708-176-4
... found when testing full-size parts. Unfortunately, such tests are adaptable only for plate specimens of limited sizes and have not become widely used. The Charpy V-notch test continues to be the most used and accepted impact test in use in the industry. However, the restricted applicability...
Abstract
Measurement and analysis of fracture behavior under high loading rates is carried out by different test methods. This article provides a discussion on the history and types of notch-toughness tests and focuses exclusively on notch-toughness tests with emphasis on the Charpy impact test. It reviews the requirements of test specimens, test machine, testing procedure and machine verification, application, and determination of fracture appearance and lateral expansion according to ASTM A370, E 23, and A 593 specifications. In addition, the article includes information on the instrumentation, standards and requirements, and limitations of instrumented Charpy impact test, which is carried out in specimens with induced fatigue precrack. The article concludes with a review of the requirements of drop weight testing and the specimens used in other notch-toughness tests.
Image
in High-Strength Low-Alloy Steel Forgings
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 9 Impact transition temperature profile of a third-generation microalloy steel in Charpy V-notch testing. New alloys maintain adequate toughness to −60 °C (−76 °F) and below.
More
Image
Published: 01 January 1996
Fig. 17 Effect of sulfide shape control on transverse toughness of structural steels. (a) Typical transition behavior of HSLA steel without inclusion shape control. Data determined on half-size Charpy V-notch test specimens. (b) Effect of cerium-to-sulfur ratio on upper-shelf impact energy
More
1