Skip Nav Destination
Close Modal
By
R.N. Caron, R.G. Barth, D.E. Tyler
By
Derek E. Tyler, William T. Black
Search Results for
C68700
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 25
Search Results for C68700
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Copper Tubular Products
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003132
EISBN: 978-1-62708-199-3
..., nuts C60800 Aluminum bronze, 5% B 111, B 359, B 395 Condenser, evaporator and heat-exchanger tubes; distiller tubes C65100 Silicon bronze B B 315 Heat-exchanger tubes; electrical conduits C65500 Silicon bronze A B 315 Chemical equipment, heat-exchanger tubes; piston rings C68700...
Abstract
This article discusses the applications and tensile properties of selected copper tube alloys, as well as the methods for producing copper tubular products, namely extrusion and rotary piercing. It explains the methods available for the finishing of copper tubular products, such as tube welding, cold drawing, and tube reducing. The article lists the standard dimensions and tolerances for several kinds of copper tubes and pipes in the ASTM specifications, along with other requirements for the tubular products.
Book Chapter
Density of Metals and Alloys
Available to PurchaseBook: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0006543
EISBN: 978-1-62708-183-2
... Forging brass C37700 8.44 0.305 Architectural bronze C38500 8.47 0.306 Inhibited admiralty C44300 8.53 0.308 Naval brass C46400, C46500 8.41 0.304 Aluminum brass C68700 8.33 0.3001 Leaded naval brass C48500 8.44 0.305 Manganese bronze (A) … 8.36 0.302 Phosphor...
Abstract
Density allows for the conversion of uniform corrosion rates from units of weight (or mass) loss per unit area per time to thickness per unit time. This article contains a table that lists the density of metals, such as aluminum, copper, iron, stainless steel, magnesium, and lead, and their alloys.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003816
EISBN: 978-1-62708-183-2
... on brass that contains a few percent aluminum in addition to copper and zinc. This markedly increases the resistance to impingement attack in turbulent high-velocity saline water. For example, the arsenical aluminum brass C68700 (76Cu-22Zn-2Al) is frequently used for marine condensers and heat exchangers...
Abstract
This article discusses the identifying characteristics of the forms or mechanisms of corrosion that commonly attack copper metals, as well as the most effective means of combating each. It tabulates the corrosion ratings of wrought copper alloys in various corrosive media. The article describes the corrosion behavior of copper alloys in specific environments. It reviews the corrosion characteristics of copper and copper alloys in various acids, alkalis, salts, organic compounds, and gases. The article provides information on the behavior of copper alloys that is susceptible to stress-corrosion cracking in various industrial and chemical environments. It concludes with information on various corrosion testing methods, including aqueous corrosion testing, dynamic corrosion tests, and stress-corrosion testing.
Book Chapter
Corrosion Characteristics of Copper and Copper Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003137
EISBN: 978-1-62708-199-3
... An important constituent of the corrosion film on a brass that contains a few percent aluminum in addition to copper and zinc is aluminum oxide (Al 2 O 3 ), which markedly increases resistance to impingement attack in turbulent high-velocity saline water. For example, the arsenical aluminum brass C68700 (76Cu...
Abstract
Copper and copper alloys are widely used in many environments and applications because of their excellent corrosion resistance, which is coupled with combinations of other desirable properties. This article lists the identifying characteristics of the forms of corrosion that commonly attack copper metals as well as the most effective means of combating each. General corrosion, galvanic corrosion, pitting, impingement, fretting, intergranular corrosion, dealloying, corrosion fatigue, and stress-corrosion cracking (SCC) are some forms of corrosion. The article also lists a galvanic series of metals and alloys valid for dilute aqueous solutions, such as seawater and weak acids. It provides useful information on the effects of alloy compositions, selection for specific environments, and atmospheric corrosion of selected copper alloys. The article also tabulates the corrosion ratings of wrought copper alloys in various corrosive media.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006280
EISBN: 978-1-62708-169-6
... Bronze, low fuming 56.0–60.0 0.05 0.25–1.25 bal 0.75–1.10 Sn; 0.01 Al; 0.01–0.50 Mn; 0.04–0.15 Si C68700 Aluminum brass, arsenical 76.0–79.0 0.07 0.06 bal 1.8–2.5 Al; 0.02–0.06 As C68800 … bal 0.05 0.2 21.3–24.1 3.0–3.8 Al; 0.25–0.55 Co C69050 … 70.0–75.0 … … bal 0.50–1.5...
Abstract
Brasses are copper alloys with zinc as the principal alloying element. This article provides information on the chemical compositions and mechanical properties of the three types of brasses: alpha, duplex and beta. It briefly discusses the Unified Numbering System designations, compositions, and classifications of wrought brasses and cast brasses. The article provides a discussion on annealing, recrystallization, and grain growth of wrought brasses. Stress relief of wrought brasses, which is typically conducted below the annealing temperatures, is also briefly described.
Book Chapter
Heat Treating of Copper and Copper Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006276
EISBN: 978-1-62708-169-6
Abstract
This article provides information on the Unified Numbering System designations and temper designations of copper and copper alloys. It discusses the basic types of heat treating processes of copper and copper alloys, namely, homogenizing, annealing, and stress relieving, and hardening treatments such as precipitation hardening, spinodal hardening, order hardening, and quench hardening and tempering. The article presents tables that list the compositions and mechanical properties of copper alloys. It also discusses two strengthening mechanisms of copper alloys, solid-solution strengthening and work hardening. Finally, the article provides information on the equipment used for the heat treating of copper and copper alloys, including batch-type atmosphere furnaces, continuous atmosphere furnaces, and salt baths.
Book Chapter
Metallography and Microstructures of Copper and Its Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003772
EISBN: 978-1-62708-177-1
..., 1 Sn, 38.7 Zn, 1.5 Fe, 0.3 Mn C68700 Arsenical aluminum brass 77.5 Cu, 20.3 Zn, 2.2 Al, (0.04 As) Wrought copper-nickel alloys and nickel silvers C70600 Copper-nickel, 10% 88.6 Cu, 10 Ni, 1.4 Fe C71300 Copper-nickel, 25% 75 Cu, 25 Ni C71500 Copper-nickel, 30% 68.5 Cu, 31 Ni...
Abstract
This article describes the microstructure of copper alloys, including copper-zinc (brasses), bronzes, copper-nickel, and copper-nickel-zinc, and examines the effect of oxygen content on alloy phases observed in different product forms. The article also discusses inclusions, etchants, and the effect of composition and processing on grain structure and growth rates.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004105
EISBN: 978-1-62708-184-9
.../yr 90Cu-10Ni C70600 0.075 3 0.86 34 70Cu-30Ni C71500 0.13 5 0.66 26 2% Al brass C68700 0.075 3 0.56 22 6% Al brass C60800 0.13 5 0.53 21 Arsenical admiralty brass C44300 0.33 13 0.89 35 Phosphorus deoxidized copper C12200 0.36 14 2.7 105 CDA...
Abstract
This article discusses the general properties of ocean water and their effects on corrosion. It describes the major and minor features of the ocean water on corrosion, including the effects of variability, pollutants, and fouling organisms. Effects of water flow velocity on marine corrosion are also reviewed.
Book Chapter
Introduction and Overview of Copper and Copper Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003131
EISBN: 978-1-62708-199-3
Abstract
Copper and copper alloys are widely used because of their excellent electrical and thermal conductivities, outstanding resistance to corrosion, and ease of fabrication, together with good strength and fatigue resistance. This article provides an overview of property and fabrication characteristics, markets, and applications of copper and its alloys. It contains several tables that provide helpful information on the chemical composition, classification, designation, uses, and mechanical properties of wrought copper and copper alloys.
Book Chapter
Heat Treating of Nonferrous Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003204
EISBN: 978-1-62708-199-3
Abstract
This article discusses different heat treating techniques, including quenching, homogenizing, annealing, stress relieving, stress equalizing, quench hardening, strain hardening, tempering, solution heat treating, and precipitation heat treating (age hardening) for different grades of aluminum alloys, copper alloys, magnesium alloys, nickel and nickel alloys, and titanium and titanium alloys and its product forms.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001066
EISBN: 978-1-62708-162-7
Abstract
Wrought copper and copper alloys are produced in various mill-product forms for a variety of applications due to their high electrical conductivity, corrosion resistance, ease of fabrication, and good heat-transfer properties. This article describes the manufacturing processes used to produce wrought copper and copper alloys in the form of sheet and strip products, tubular products, and wire and cable. Common processes include melting, casting, hot and cold rolling, milling or scalping, annealing, cleaning, slitting, cutting, and leveling. In addition, the article discusses stress-relaxation characteristics of copper alloys.
Book Chapter
Introduction to Copper and Copper Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001065
EISBN: 978-1-62708-162-7
... C68700 (aluminum bronze, arsenical) 77.5 Cu, 20.5 Zn, 2.0 Al, 0.1 As T 414 60 186 27 55 30 C68800 73.5 Cu, 22.7 Zn, 3.4 Al, 0.40 Cu F 565–889 82–129 379–786 55–114 36–2 … C69000 73.3 Cu, 3.4 Al, 0.6 Ni, 22.7 Zn F 496–896 72–130 345–807 50–117 40–2 … C69400 (silicon red...
Abstract
Copper and copper alloys constitute one of the major groups of commercial metals due to their excellent electrical and thermal conductivities, corrosion and fatigue resistance, ease of fabrication, and good strength. This article lists the types, properties, fabrication characteristics, corrosion ratings, temper designations, and applications of wrought copper and copper alloys. It also presents an outline of the most commonly used mechanical working and heat treating processes. The copper industry in the United States is broadly composed of two segments: producers (mining, smelting, and refining companies) and fabricators (wire mills, brass mills, foundries, and powder plants). The article discusses copper production methods and describes major changes in the structure of the U.S. copper and copper alloys industry.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001817
EISBN: 978-1-62708-180-1
..., intergranular, or mixed on the same metal part, and it may be accompanied by deposition of copper within the cracks. Arsenic does not prevent SCC in copper alloy C68700 (arsenical aluminum brass) subjected to ammonia- and copper-dosed seawater, although arsenic can have beneficial effects at stresses below...
Abstract
This article describes the characteristics of tubing of heat exchangers with respect to general corrosion, stress-corrosion cracking, selective leaching, and oxygen-cell attack, with examples. It illustrates the examination of failed parts of heat exchangers by using sample selection, visual examination, microscopic examination, chemical analysis, and mechanical tests. The article explains corrosion fatigue of tubing of heat exchangers caused by aggressive environment and cyclic stress. It also discusses the effects of design, welding practices, and elevated temperatures on the failures of heat exchangers.
Book Chapter
Machining of Copper and Copper Alloys
Available to PurchaseBook: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002185
EISBN: 978-1-62708-188-7
... C43500 Tin brass 81.00 … 18.1 … 0.9 30 C68700 Aluminum brass 77.50 … 20.50 (2.00 Al) … 30 C69400 Silicon red brass 81.50 … 14.50 (4.0 Si) … 30 C77000 Nickel silver 55.00 18.00 27.00 … … 60 Group 3: difficult-to-machine alloys C10100-C10800 Oxygen-free copper...
Abstract
This article begins with a discussion on machinability ratings of copper and copper alloys and then describes the factors influencing the machinability ratings. It explains the effect of alloying elements, cold working, and cutting fluid on the machinability of copper and copper alloys. In addition, the article provides a comprehensive discussion on various machining techniques that are employed for machining of copper and copper alloys: turning, planing, drilling, reaming, tapping and threading, multiple operation machining, milling, slitting and circular sawing, power band sawing and power hacksawing, grinding, and honing.
Book Chapter
Forms of Corrosion
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
Abstract
This article addresses the forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. It describes the mechanisms of corrosive attack for specific forms of corrosion such as galvanic corrosion, uniform corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching.
Book Chapter
Procedure Development and Practice Considerations for Resistance Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001443
EISBN: 978-1-62708-173-3
Abstract
Resistance welding (RW) encompasses a group of processes in which the heat for welding is generated by the resistance to the flow of electrical current through the parts being joined. The three major resistance welding processes are resistance spot welding (RSW), resistance seam welding (RSEW), and projection welding (PW). This article addresses the considerations for using these processes to join specific types of materials. It discusses the process variations, applicability, advantages, and limitations of these resistance welding processes. The article provides information on flash welding, high-frequency resistance welding, and capacitor discharge stud welding. It concludes with a discussion on resistance welding of stainless steels, aluminum alloys, and copper and copper alloys.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
Abstract
Corrosion is the electrochemical reaction of a material and its environment. This article addresses those forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. Various forms of corrosion covered are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described. These reviews of corrosion forms and mechanisms are intended to assist the reader in developing an understanding of the underlying principles of corrosion; acquiring such an understanding is the first step in recognizing and analyzing corrosion-related failures and in formulating preventive measures.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
Abstract
This article focuses on the mechanisms of microbially induced or influenced corrosion (MIC) of metallic materials as an introduction to the recognition, management, and prevention of microbiological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It discusses the degradation of various protective systems, such as corrosion inhibitors and lubricants. The article describes the failure analysis of steel, iron, copper, aluminum, and their alloys. It also discusses the probes available to monitor conditions relevant to MIC in industrial systems and the sampling and analysis of conditions usually achieved by the installation of removable coupons in the target system. The article also explains the prevention and control strategies of MIC in industrial systems.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006813
EISBN: 978-1-62708-329-4
Abstract
Heat exchangers are devices used to transfer thermal energy between two or more fluids, between a solid surface and a fluid, or between a solid particulate and a fluid at different temperatures. This article first addresses the causes of failures in heat exchangers. It then provides a description of heat-transfer surface area, discussing the design of the tubular heat exchanger. Next, the article discusses the processes involved in the examination of failed parts. Finally, it describes the most important types of corrosion, including uniform, galvanic, pitting, stress, and erosion corrosion.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004004
EISBN: 978-1-62708-185-6
... C24000 C31400 C61400 C26000 (cartridge brass) C33000 C63000 C42500 C54400 … C44300 C69700 … C50200 C70600 … C51000 C71000 … C52100 C71500 … C52400 C77000 … C65100 … … C65500 … … C68700 … … C75200 … … C76200 … … Note: OFHC, oxygen-free...
Abstract
Cold heading is typically a high-speed process where a blank is progressively moved through a multi-station machine. This article discusses various cold heading process parameters, such as upset length ratio, upset diameter ratio, upset strain, and process sequence design. It describes the various components of a cold-heading machine and the tools used in the cold heading process. These include headers, transfer headers, bolt makers, nut formers, and parts formers. The article explains the operations required for preparing stock for cold heading, including heat treating, drawing to size, machining, descaling, cutting to length, and lubricating. It lists the advantages of the cold heading over machining. Materials selection criteria for dies and punches in cold heading are also described. The article provides examples that demonstrate tolerance capabilities and show dimensional variations obtained in production runs of specific cold-headed products. It concludes with a discussion on the applications of warm heading.
1